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CHAPTER ONE

BACKGROUND

The advent of multiphase engineering materials, in particular fiber

reinforced composites, has opened the door for tailored engineering

materials. Depending on the nature of packing, order and symmetry of the

different phases, a wide range of material properties and structural

stability can be achieved. To address the technological needs for structural

applications in space and on the ground wherein multidirectional

reinforcement and high level of thermo-mechanical stability are required, a

great deal of effort has been devoted to the development of strong and tough

composite material in the past decade.

It has been recognized that fiber architecture, being the structural

backbone of composites, has much to contribute to the structural

toughening of composites. As it is often found in nature, e.g., bee's

honeycomb, and crystal of reticulated cerussite, a well ordered triangular

packing with material symmetry provides the most efficient and

structurally stable material system. To reduce this material concept into

practice, it has been found that fiber replacement by textile processes in an

economical and practical way to create the desirable fiber architecture.

!
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For example, as shown in Figure 1.1, a triaxially woven fabric produces a

well regulated, symmetric network of hexagons. As a result, this structure

has the highest level of planar stability and isotropy comparing to other

planar fibrous assemblies. For thick structures, on the other hand, the

concept of close-to-cubic (CTC) symmetry was explored for hardened

structure for re-entry applications utilizing a 4-directional reinforcement.

Reducing the close-to-cubic symmetry concept into practice in our

laboratory by a three-dimensional braiding process, the concept of

structural toughening by 3-D fiber architecture has been successfully

demonstrated.

Another significant outcome of our research is the demonstration of the

direct formation of structural shapes by the 3-D braiding process. The

idealized unit cell structure from a 3-D braided 1-beam is shown in Figure

1.2. While the idea of net shape, tough composite is very attractive for

structural applications, the question often asked is the compressive

resistance of the 3-D integrated structures.

I
The major concern, as seen in Figure 1.3, is the apparent structural

weakness at yar crossovers or where the yarns are bent. To address this

problem or to elevate the level of compressive resistance of this 3-D

structures, it appears that an additional reinforcement system or an

incompressible phase would be needed.
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Figure 1.3 Isometric View of Yarn Geometry in a 3-D Braid.
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As we experience in ball bearings and many other applications, it is well

known that, for the same material, spherical shape provides the best

compressive resistance. If one introduces a spherical phase in the

reinforcement system and allows the spheres to bear the compressive

stresses, a hybrid geometrical structure having tensile, shear and

compressive resistance can be produced. This can conceivably be achieved

as shown in Figure 1.4 by the superposition of a closest packing of spheres

in a tetrahedral/octahedral fiber network.

Equally as important as the development of the High Symmetry Composites

(HSC) system, the issue of prediction of macro-structural performance

from microstructure on a unit cell level must be addressed. Although some

initial work has been carried out on the modelling of unit cell geometry of

3-D braid composites, there is currently no satisfactory theoretical

framework linking microstructural unit cell to macrostructural

performance as called for in a recent ASME meeting. The mesomechanics

of HSC is quite necessary in order to provide guidance to the creation of the

multiphase material system and to explore the potential of structural

systems from these materials for end use requirements yet to be defined.

What is needed is the precise identification and quantification of the unit

cell geometry with a combination of spheres and fiber network.

I
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Treating this cell as a finite structural unit, a Fine Cell Model (FCM) can be

developed. The FCM, on one hand, account for the detail design of the unit

cell structure and, on the other hand, it allows the exploration of global

structural behavior, therefore bridging the communication gap between

material scientists and structural mechanicians.

Accordingly, the objectives of this proposed study are:

1. To demonstrate the feasibility and potential of composite

mate'-ial system with high level of tensile, compressive

and damage resistance by the concept of High Structural

Symmetry.

2. To establish a theoretical framework for the design,analysis and

prediction of structural performance of the High

Symmetry Composite through Finite Cell Modelling.

To achieve our objectives, this study begins with a review of the technology

of 3-D fiber architecture. To provide a basis for discussion, the 3-D fiber

architectures are classified according to the level of symmetry. After

establishing a framework for the modelling of the geometry of the

mechanical responses of high symmetry structures are modelled by the

finite cell methodology. In order to transform the geometric concepts to

reality, a method for the fabrication of the high symmetry structures is

illustrated. It was planned, in the subsequent Phase of the program, that

the fabrication method will be demonstrated and employed to produce high

symmetry ceramic matrix composites. Verifications of the geometric and

mechanical models were also planned in the subsequent Phase of the

program by mechanical testing and geometric characterization.

I
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CHAPTR TWO

3-D FIBER ARCITECTURE

In order to develop a classification system for 3D fiber architectures one

needs to examine the state of the art of these architectures. The result of

this examination provides information which can be used to develop new

classes based on the distinguishing and the-common properties of the 3D

fiber architectures which are produced today and which will be produced

tomorrow.

This chapter provides the reader with a review of the state of the art of 3D

fiber architectures. The different fiber architectures are grouped in this

chapter by their traditional classifications.'

Knits
Knitting involves the interlooping of yarns. The knitting process involves

two steps; the formation of loops in the yarns, and the linking of the formed

loops together with needles. There are two basic types of knitting. These

types are called warp knitting and weft knitting. Basic warp and weft knit

structures are shown in Figure 2-1.
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Basic Weft Knit Stitch (20J

Basic Warp Knit Stitch [20]

Figure 2,1



Weft knitting is the oldest form of knitting. The first weft knit machine was

invented about 1589 (12]. Weft knitting involves the formation of a whole

row of loops from one yarn. These loops are then pulled through the

previous row of loops to form the knit. Most apparel is formed by weft

knitting. Hand knitting is a special case of weft knitting.

Warp knitting is always machine generated. The first warp knitting

machine was invented in 1847 (12]. In warp knitting many yarns are feed

as a sheet to the knitting machine. Each yarn goes through its own needle.

The needles simultaneously form a loop and interloop of the yarn. This

knitting style possesses a higher production'late but also possesses a lower

extensibility compared to weft knitting.

Today, warp knitting is the most popular type of knitting for three

dimensional textiles. The general form of the warp knit style used in

engineering applications is Multiaxial Warp Knits (MWK). MWK typically

are composed of lay-ins in the 00, 900, and ±9 directions. The lay-in are

knitted together with a warp knit stitch. The lay-in yarns usually possess a

much larger cross-sectional area than the knitting yarns and are therefore

the major load bearing component of the fabric. These fabrics are

produced by many companies including. Kyntex of Sequin Texas, HiTech of

Reno Nevada, and Bean Fiberglass Company of Jaffrey New Hampshire.

The warp knit stitch typically used in MWK is a chain or tricot stitch. Both

stitches are shown in Figure 2-2. For many applications the tricot stitch is

the most popular. This stitch allows for more flexibility in the shear and

weft directions (36]. In a certain type of MWK, weft insert warp knits
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Tricot Stitch (32]

Chain Stitch (321

Figure 2-2
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(WIWK), the weft inserted yarns can form sinusoidal or linear paths.

WIWK are distinguished by two sets of lay-in yarns orthogonal to each

other. A WIWK with nonlinear weft yarns and a MWK are shown in

Figure 2-3.

Most MWK machines can precisely control the placement of the warp

knitting needle. However impalement of weft inserted yarns in the bias

direction often occurs. Impalement breaks and displaces fibers. Thus

impalement results in reduced in-plane strength and structural

consistency in the fabric.

The Karl Mayer Textile Machine Company of West Germany has invented

a WMK machine which does not impale yarns (36]. This affords a higher

yarn to fabric translation efficiency. However these fabrics are more

voluminous than the other weft insert warp knits. This bulkiness leads to a

lower fiber volume fraction. This lower fiber volume fraction leads to

reduced composite strength.

MWK knitting allows for much design flexibility. This flexibility partly

arises from the variability in the direction, and linearity of the weft inserts.

The effect of the direction of yarn placement on the strength efficiency of a

fabric is shown in Figure 2-4. In this figure the strength efficiency in the

machine (fabric takeoff) direction and the weft (cross or normal to machine)

direction are shown as a function of lay in yarn orientation at various

volume fractions, ranging from 0% to 40%, of longitudinal lay-in yarns.

The strength efficiency is defined as the fractional part of the strength of the

yarns transferred to the fabric (21]. When tested in the machine direction,

I
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WIWK (32]

MWK (32]

Figure 2-3
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the strength efficiency decreases as the lay in yarn angle increases. An

increase in the longitudinal yarn fiber volume fraction increases the

strength efficiency in the machine direction. Since the weft direction is

normal to the longitudinal lay-ins, an increase in longitudinal yarn fiber

volume fraction decreases the strength efficiency.

The effect of linearity can be discussed by comparing linear and nonlinear

±450 weft inserted warp knits (24]. Linear weft inserted warp knits possess

an higher initial modulus than nonlinear. The strength of the nonlinear

knit is slightly higher in the 0 and 90 degree direction. However, the bias

strength of the linear knit is much greater than the nonlinear, since in the

linear knit more fiber is aligned in this direction. The flexibility of these

knits can vary greatly depending on the number of layers and the direction

of the weft yarn inserts.

MWK can produce fabrics up to 1.3 centimeters thick. By using another

technique, a thick warp knitted fabric can be formed. The Aerospatiale

Company of France pioneered this technique.

Aerospatiale developed a three dimensional circular knitting machine.

Presently there are two models of this machine (1,2,8]. These machines are

capable of producing the fabric geometries shown in Figure 2-5. The

different knit geometries are a result of the different templates used for the

longitudinal yarns. The two different template structures are shown in

Figure 2-6. These templates define the paths of two of the three constituent

yarns. In the first geometry, which will be referred to as XXYZ,

circumferential yarns are laid in and radial yarns are knitted. The radial

1
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Aerospatiale XXYYZ Geometry (8]

RADIAL

Aerospatiale XJCYZ Geometry (7]

Figure 2-5
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yarns form a series of chain stitches on the outer side the the fabric. In the

second geometry, XXYYZ, two sets of radial yarns form chain stitches in

different directions and on alternating levels. Both these geometries

provide high tensile and shear strength in all directions. The XXYYZ

geometry is more flexible as a result of the substitution of a second radial

knitting yarn for the circumferential yarn.

The fabric formation process used for each geometry is slightly different.

This paragraph describes the formation process for the XXYZ geometry (7].

First metallic rods are inserted in the template in the longitudinal yarn

position. Then the radial yarns are knitted I y an hook-shaped needle which

is inserted between the longitudinal rods and the circumferential yarns are

feed into circumferential corridors. The apparatus on which the template

is set rotates, allowing the knitting of the chain stitches and the laying

down of the circumferential yarns. After each layer is formed, it is

compacted. After all the radial and circumferential yarns are added, the

longitudinal wire rods are pushed out using lacing needles. The eye of both

needles then hooks a yarn strand and inserts it into the proper longitudinal

position.

The following is the fabric formation process for the XXYYZ geometry (8].

First metallic rods are inserted in the template in the longitudinal yarn

position. Then the two radial yarns are knitted by hook-shaped needles

which are inserted between the longitudinal rods. The two different radial

knitting machines move around the template structure. After each layer is

formed, it is compacted. After all the radial yarns are added, the

longitudinal wire rods are pushed out using lacing needles. The eye of
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each needle then hooks a yarn strand and inserts it into the proper

longitudinal position.

Although warp knitting is the most popular form of knitting for three

dimensional textile structures, Courtaulds produces a modified computer

controlled weft knitting machine to knit three dimensional preforms (36].

This modification allows individual needle control. This control is

important with high modulus fibers. The brittle nature of high modulus

fibers cause them to be more susceptible to breakage with variations in

tension. The individual needle control maintains constant tension on each

yarn during the knitting process.

Examples of the complex three dimensional shapes that can be knitted with

this process are shown in Figure 2-7. A substantial amount of the fiber lies

in a loop configuration. Since the loop configuration is comprised of so

many orientations, this configuration is similar to that of a random mat.

Because of this configuration, these fabrics possess moduli comparable to

those of a random mat. The tensile strength of these fabrics is lower than

that of a random mat [39]. The key advantage of this structure is the ability

to form integral structures without fiber discontinuities at key joints in the

structure. These structures are three dimensional in shape but their

thickness is small.

In general, because of the toughness needed by the knitting yarn, there are

some material restrictions on this yarn. With the weft insert warp knits,

the knitting yarn is usually a polyester yarn with a diameter a tenth the
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Three DimensiorAl Shapes Produced by Weft Knitting (393

Figure 2-7
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size of the weft yarns. The presence of the loop make knits tougher and

more comformable to complex shapes.

Braids

Braids are formed by the intertwining of yarns. The basic braiding method

is shown in Figure 2-8. The intertwining is accomplished by the crossing of

yarns on individual yarn carriers. The oldest recorded use of braiding is

between 1500 and 1000 B.C. (12]. Although this technique has been used

since prehistoric times, in general, it has never been as popular as the

other textile techniques. One of the factors that limited the use of braids is

that the braiding machine size must be much larger than the actual braid

produced. However in the field of three dimensional textiles, braiding

techniques are becoming very popular. This popularity is a result of their

high damage tolerance, delamination resistance, and conformability.

Three dimensional Euclidean braiding involves the steps shown in Figure

2. This sequence can be performed on circular or rectangular looms. In

this process yarns gradually move through the thickness of the fabric,

through alternate track and column motion. Thus the yarns traverse a

circular path with a zig-zag motion. The resultant yarn path, projected

onto the braidplane, of one yarn following this sequence in both types of

looms is shown in Figure 2-10. The three dimensional path of one yarn in

an Euclidean braid is shown in Figure 2-11. The discrete lattice shown in

this figure is used to locate the yarn in the braid. The presence of this

lattice has generated the nomenclature, Euclidean braiding, to describe the

track/column braiding process.

.. . -mmlaml ~ mH ii|i
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Basic Braiding Motion (19]

Figure 2-8
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Figure 2-10
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Isolated Path of a Single Yamn in a 3D Braided Fabric [31]

Figure 2-11
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After each set of track and column movements, the yarns are compacted.

In this process body diagonal yarn pairs resulting from a track/column

movement are compacted against body diagonal pairs arising from the

previous track/column motion. The compacting motion intertwines the

yarns. The braiding process just mentioned is the result of many

developments in braiding machine technology. The following paragraphs

trace the development of three dimensional braiding machines.

This first patent for this method of yarn placement was granted to Bluck in

1969 (3]. Bluck's machine moved the tracks and columns of the braiding

plane with cams connected by gears to a driveshaft Each yam is fed into

the braiding plane through holes in individual yarn guides. The yarn

guides move in the braiding sequence as mentioned above. The speed of

braiding is controlled by takeoff rollers which grip the fabric a certain

distance from the braiding plane and pull the fabric away from this plane.

A schematic of this machine is shown in Figure 2-12.

In 1973 Maistre patented a braiding process [27]. In this process, the yarns

are attached to a rigid frame which arranges the yarns into a vertical net.

The distance between the yarns comprising the net is constant in the

vertical and horizontal directions. In Maistre's machine the yarn feeding

mechanism is not in the braiding plane and there is no takeoff roller.

Braiding occurs as a result of the alternate displacement of the row and

columns of the yarns. Though Maistre's machine differs from Bluck's in

the yarn feeding mechanism and the absence of a takeoff roller, the

resultant yarn path of both machines is the same.

I
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Takeff RllerBraiding Plane

Bluck's Braiding Apparatus [3]

Figure 2-12
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In 1982 Florentine improved Bluck's braiding machine. Florentine's

machine (13], called "Magnaweave", uses solenoids to move the yarn

carriers. The yarn carriers are properly aligned with respect to each other

by bar magnets on the yarn carrier. Each yarn carrier contains a spool of

yarn. A series of pins to beat up the braided fabric are added between the

braiding plane and the takeoff rollers. These pins are removed during each

braiding sequence and are engaged again after said sequence.

In 1986 Brown (6] addressed the problem of machine jamming in the

braiding machine of Florentine. Jamming is minimized by moving a track

or column of yarns carriers sequentially, and by applying a tamping stroke

after each movement to insure that the yarn carriers are in their proper

place. Brown's yarn carrier design is also different. In Brown's setup, a

finite length of yarn is attached to a smaller length of an elastic yarn. The

looped end of the elastic yarn is attached to a hook on the yarn carrier.

In 1988 Brown [5] modified the design of the circular braiding machine to

allow for interchangeable rings of the same diameter. These rings replace

the concentric rings used in Florentine's machine. The capacity of the

machine as measured by the number of rings could not be easily expanded

with the concentric rings.

Another three dimensional braiding process is the Two Step Braid. The

Two Step Braid was patented by Popper of DuPont in 1988 [29]. This

apparatus is shown in Figure 2-13. The Two Step Braid is composed of

axial and braider yarns. The axials are placed in the fabric forming

direction and remain approximately straight in the structure. The



30

-NW

Two-Step Braid Apparatus [291

Figure 2-13
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braiders move between the stationary axials in a special pattern, which

cinches the axials and stabilizes the shape of the braid. The path of one

yarn during a braiding sequence is shown in Figure 2-14. The zig-zag

motion of a yarn constitutes one sequence. Although the resultant yarn

path is the same for the Two Step Braid as for the other three dimensional

braids mentioned above, the method of achieving this path differs. The Two

Step Braid path differs from the other 3D braids by passing each braiding

yarn through the whole fabric thickness during each movement. In the

Two Step process a smaller number of braiding sequences is needed for the

yarn to travel back to its initial point in the braiding plane.

It is important to note that with the Euclidean braiding process, non

braiding yarns, called longitudinal yarns can be positioned between the

columns, as shown in Figure 2-15. These yarns are subjected only to a

slight zig-zag motion as the rows move back and forth. The effect of this

zig-zag motion upon the straightness of the longitudinal yarns has not been

examined. These yarns act in the same way as the the axial yarns of the

Two Step Braid. Since the longitudinal yarns are more aligned with the

fabric's vertical axis than the braiding yarns, these yarns increase the

tensile strength of an Euclidean braid in this direction. The normalized

tensile strength of 3D braids with and without axial yarns is compared in

Figure 2-16. The value of the normalized tensile strength is determined by

dividing the tensile strength measured by the number of yarns in the braid

and the breaking strength of a constituent yarn.

Figure 2-17 shows the effect of varying the braid angle of both braid types.

The braid angle is the angle a braiding yarn makes with the vertical axis of
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the braid. Though the tensile strength of the Two Step braid is greater than

that of a Euclidean braid (with no longitudinal yarns), the comformability

and compressability of a Euclidean braid is greater than that of the Two

Step braid.

Two dimensional nonwovens are formed by fiber entanglements. The

means of entanglement may be chemical or mechanical. Nonwoven felts

are considered the oldest textile structures produced. The first machine

made nonwoven, paper, was made in 1804 (37]. Today nonwovens form the

largest percentage of the two dimensional indidstrial textile market.

The simplest three dimensional nonwoven is an assembly of chopped fiber.

This nonwoven is held together in composite form by the matrix material.

Ideally this structure is the most isotropic reinforcement geometry. But

usually the resultant fiber orientation is skewed to favor melt flow paths.

This deviation is a result of the fabricating conditions of the composite. A

composite with this geometry is tough, but possesses a small strength

translation efficiency. The fibers act as crack deflectors, but do not carry a

significant part of the load. The load bearing capacity of the fibers is

increased if the aspect ratio of the fibers is large. As the length of the fibers

increases, the capacity of the fiber to transfer stress along this dimension

necessarily increases.

Three dimensional nonwovens lay ups are formed from continuous yarns.

Thus these nonwovens possess a high strength translation efficiency.

These fabrics differ from the nonwovens mentioned before. In most three

"i
m
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dimensional nonwovens the constituent yams are laid ir from various

directions and are not entangled. These nonwovens form stable structures

by means of the resultant frictional forces between fibers.

In 1971 General Electric introduced "Omniweave" (4] In this nonwoven the

path of the yarns forming the fabric is straight through the thickness

direction. When a yarn reaches a surface, the x-y orientation is reversed.

The z directional motion is maintained. A three directional orthogonal

placement of the yarns was most common which this loom. However a

four directional yarn placement along the body diagonals of a parallelpiped

unit cell can also be achieved.

In 1974 Fukuta was granted a patent (14] for a process to make a orthogonal

three dimensional fabric. Fukuta's apparatus and the fabric made with

this machine is shown in Figure 2-18. The yarns in the y direction are

fixed. A yarn inserted in the xy plane follows the path shown in Figure 2-

19. P is a binder yarn which maintains the two yarn diameter distance

between the z yarns in the y direction. A new set of z yarns is inserted after

each x yarn. A set of z yarns is inserted by the simultaneous lowering of

the z curved arm and raising of the z' curved arm.

In 1976 Crawford (9] was granted a patent for a method of laying in yarns

from various directions. The different yarn geometries formed by this

process are shown in Figure 2-20. These geometries differ from that of the

other 3D nonwovens through the combinations of orthogonal and diagonal

yarns lay-ins.
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Fukuta's Nonwoven Apparatus (14]

Figure 2-18
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In 1977 King was granted a patent for a three dimensional orthogonal

rectangular and circular loom [181. These looms and the resultant fabric

geometries are shown in Figure 2-21. The rectangular loom creates a

fabric with a distance of one yarn diameter between adjacent parallel

yarns. The circular loom creates a fabric with a distance of two yarn

diameters between adjacent yarns in one direction and a distance of one

yarn diameter between parallel yarns in the orthogonal direction. The

rectangular loom can be easily adjusted so that the x and y yarns are fed in

at an angle.

In 1978 Kallmeyer invented a three dimensional orthogonal nonwoven

rectangular loom [161. The operation sequence of this loom is diagramed in

Figure 2-22. In this process a shed is created at the center row of the z

array. Then a x yarn is added. The shed is closed. Two adjacent sheds are

then opened. The first x yarn is doubled back through the adjacent shed.

An additional x yarn is inserted through the other shed. The two sheds are

closed. Then two additional adjacent sheds open. This process continues

until a x yarn is inserted through all the z rows. At this point the loom is

rotated ninety degrees and the above process is carried out with y yams.

"Autoweave" [351 is another circular three dimensional nonwoven

machine. In this apparatus a prepreg cable is simultaneously cut and

inserted into a foam mandrel, known as a porcupine, normal to its surface.

These radial rods form helical corridors. Axial yarns are fed by a shuttle

which loops the axial yarn around the crown at each end of the mandrel

before passing through the next corridor. The circumferential yarns are
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tensioned and fed into the radial corridors by a shuttle. This process can be

adapted for four and five directional yarn lay ins.

Of the processes mentioned above the Autoweave process is the most flexible

and rapid. These structures possess high strength and moduli in the

direction of fiber reinforcement. However these structures are not as

conformable as other structures such as the 3D braids.

Another type of three dimensional nonwoven, called Noveltex [151, is a

modification of needle punch technology. In this process a roll of a 2D

fabric is placed under needles which pierce tlho fabric. The needles pierce

through one to two 2D fabric layers. More 2D fabric from the same roll is

then placed under the needles. In this way a thick fabric with some

orientation in the through thickness direction is formed. This orientation

hinders delamination. The resultant three dimensional fabric possesses

high compressive and shear strength. However the fabric's tensile and

flexural strength is lower than the other continuous fiber three mentioned

before.

Many of the nonwoven fabrication processes described in this section form

similar unit cells. The orthogonal nonwoven structures of the Omniweave,

King's rectangular loom, Autoweave, and Kallmeyer processes will be

henceforth referred to as XYZ nonwovens. The orthogonal nonwovens of

Fukuta and King's circular loom will be referred to as XXYZ nonwovens.

This structure is similar to a XYZ nonwoven composed of x yarns which

possess a cross-sectional area that is twice the size of the other constituent

yarns.



45

wgoens

Woven fabrics are formed by yarn interlacing. The weaving process

consists of three basic steps. This process is ;hown in Figure 2-23. The

first step is called shedding. Shedding is the separation of warp yarns (the

set of yarns in the machine direction) into top and bottom sheets. In the

next step, weft insertion, a weft yarn (set of yarns not in the machine

direction) is inserted between the two sheets. The final step is the

compacting of the weft yarn, in which a reed forces the weft yarn tightly

into the shed of the fabric. When this process is repeated, the position of at

least some of the warp yarns forming the two sheets is reversed. The

reversal of the warp yarns creates a sinusoidal path for these yarns. The

actual length of the curved yarn divided by the net distance traveled, is

known as the crimp of the fabric.

The earliest evidence of the use of a loom was in Egypt at 4400 B.C. [121. By

the 13th century the standard horizontal loom design, which is still used,

had evolved. This loom was automated in a series of steps during the 18th

century. For intricate weaves a draw loom is used. A draw loom possesses

cords attached to the warp yarns. These cords allow for more control in

forming the upper and lower sheet in the shedding process. In 1805

Jacquard introduced a draw loom with an automatic shedding device [12).

Ever since this time, a loom which allows for custom tailoring of each warp

yarn motion is called a Jaquard loom.

Adaptations are made to two dimensional weaving techniques when used

for engineering applications (10]. For engineering applications a
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minimum amount of crimp is desired. The greater the amount of crimp,

the greater the magnitude of the components of the fiber position vector not

aligned with the fabric axis. This misalignment leads to diminished

strength. Crimp is minimized by using weaving techniques such as the

satin weave. In Figure 2-24 a five harness satin and a plain weave are

shown. Note the number of interlacings is smaller in the satin weave. A

lower number of interlacings in a fabric results in a smaller amount of

crimp.

Crimp also needs to be minimized since the high modulus yarns typical of

engineering applications possess a large critical bending radius. The

critical bending radius is inversely proportional to the amount of curvature

a yarn can maintain without breaking. Special high modulus weaves are

available which avoid this problem by keeping the high modulus yarns

straight and performing the actual weaving with a low modulus yarn

possessing a much smaller cross-sectional area.

There are two forms of three dimensional weaves. In the first form, a thin

fabric is woven in such a way as to obtain a three dimensional form. This

form of three dimensional weaving is shown in Figure 2-25. The second

form of three dimensional weaving results in the formation of a fabric of

substantial thickness. It is this form of weaving that is addressed in the

following paragraphs.

A weave geometry for thick fabrics is mentioned in Rheaume's 1973 patent

(34]. This geometry is shown in Figure 2-26. This figure is a schematic of

the weave's geometry normal and parallel to the warp yarn plane. The
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weaving of the warp yarns is controlled by a series of Jaquard heads. This

three dimensional geometry is created by adding a web yarn in the through

thickness direction. Although in this patent the web yarns transverse the

fabric thickness, thick weaves are also made with not all layers being

transversed. Using web yarns fabrics up to seventeen layers thick have

been woven. There is no inherent limit to the thickness of these weaves.

The current limit is a result of the machinery currently available. These

fabrics are produced by companies such as Textile Technologies in Hatboro,

Pa and Woven Structures in Compton, Ca.

An apparatus for creating thick weaves was'patented by Emerson in 1973

[11]. Emerson's machine is a circular loom controlled by a plurality of

Jacquard heads. These heads control the placement of stuffer and locker

warp yarns (analogous 'o the web yarns mentioned above). There is also a

filler yarn system which follows an helical path. Insertion of the filler

yarns is controlled by an inserter which moves around the mandrel. The

stuffer yarns are parallel to the mandrel axis. The locker yarns follow a

sinusoidal path around the stuffer and filler yarns. This path is in the

radial direction with respect to the mandrel axis. A fabric compactor

comprised of a perforated plate compacts the fabric after each filler yarn

insertion. Possible weave geometries resulting from this machine are

shown in Figure 2-27. The complexity of this machine leads to problems in

fabrication and as a result this process is not currently popular.
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CELAPTERThEE

SYMMEMY OF THREE DIMENSIONAL FIBER ARCHITECTURES

Introduction

Since the interior unit cells of many fabric structures from different textile

classes possess the same elements of symmetry, a classification system

based on these symmetry elements has been developed. This chapter will

explain the underlying principles of symmetry used to develop this model.

The symmetry present in the three dimensional fiber architectures

mentioned in chapter two will be explained. Additionally, the performance

properties of fiber architectures can be modelled by utilizing the different

elastic strain energy expressions produced by different combinations of

symmetry elements.

Symmetry in Materials

The symmetry concepts employed in the description of the various textile

structures are adapted from the field of crystallography. There are three

basic type of operations used to determine symmetry. These operations are:

rotation about an axis, reflection in a plane, and rotoinversion (rotation

followed by reflection). A material is symmetric under one of the above

operations if it appears as it did initially after a symmetry operation.
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A restriction is placed on the allowable types of rotation operations. This

restriction is that rotation operations must be performed in such a manner

that the translational symmetry of the material is maintained.

Translational symmetry is maintained when the distance between adjacent

lattice sites remains constant. Besides a rotation of 360 degrees, this

symmetry can only be maintained with rotations of 60, 90, 120, and 180

degrees about a symmetry axis. The rotational symmetries corresponding

to the above rotations are hexad, tetrad, triad, and diad respectively.

For a three dimensional object, the symmetry operations about three

mutually orthogonal axes must be coherent. --When coherence is achieved,

a combination of a symmetry operation on one axis followed by an operation

on a second axis is equivalent to one operation about the third axis. There

are 32 combinations of symmetry elements for three dimensional figures

which satisfy this requirement. These combinations are referred to as the

32 crystallographic point groups. When these operations are performed,

the position of only one point, the point though which they pass, is

unmoved.

These point groups are usually diagrammed on stereograms. Stereograms

are two dimensional representations of a three dimensional body. Figure

3-1 diagrams a stereogram with the z axis normal to the stereograph plane

and intersecting said plane at the center of the stereogram. Figure 3-2

(adapted from (171 ) diagrams the different positions of a point is it

undergoes different symmetry operations. Figure 3-2a represents a

rotation of 360 degrees about the z axis (central point on stereogram).

Figure 3-2b to e represents a diad axis, traid axis, tetrad axis, and an hexad
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axis, respectively. A reflection through a mirror plane along the x axis is

shown in figure 3.2f. A reflection through a mirror plane in the xy plane is

shown in figure 3.2g. Figure 3.2h is a rotoinversion operation consisting of

a rotation of 360 degrees followed by inversion through the center of the

sphere of projection. The effect of the other rotoinversion operations is

shown in Figures 3-2i, j, and k.

Figure 3-3 (adapted from [17] ) diagrams the 32 possible point groups.

These point groups are classified by the shape of the unit cell in which they

occur. Each unit cell class is ordered in terms of increasing symmetry.

The state of highest symmetry for a certain class is known as the

holosymmetric state. The different criteria for classifying these unit cells

and the shape of these unit cells is given in Table 3-1. The lattice

parameters a, b, and c correspond to the length of the unit cell in the x, y,

and z directions, respectively. The directional cosines are denoted by angles

a, P, and y.

Symmetry Elements in 3D Fiber Architectures

The symmetry considerations described above were devised for materials

with symmetric atomic structure. The textile structures described here

consist of continuous lengths of yarn oriented in various directions with

respect to one another. When the these yarns intersect, they offset each

other in space. This offset will be ignored when describing the symmetry

elements present in the 3D fiber architectures. The area of the yarn's

intersection is reduced to a point when performing symmetry operations.

A schematic of a yarn intersection before and after the above simplification

A-- m -mm -m -mmmmmm - --
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system Symmetry Conventional Cell
Triclinic No axes of symmetry a*bc: as[fie
Monclinic One Diad a*b c ct---y4OO
Orthorhombic Three Orthogonal Perpendicular Diads asbrc a=--y-900
Trigonal One Triad a=b=c a= --V<1200
Tetragonal One Tetrad a=bo c a=---900
Hexagonal One Hexad a bic a=P=900,-=12 00
Cubic Four Triads a=b=c: af=--=900

Crystallographic Unit Cells (adapted from [171])
Table 3-1
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is shown in Figure 3-4. Other assumptions concerning the geometry of the

yarns that have been made are: the yarns possess a circular cross-sectional

area, and in the limit of the lattice parameter scale the yarns are linear.

There are additional simplifying assumptions that must be made to

generate rectilinear unit cells for fabrics formed on circular looms. Since

the lattice parameter of each unit cell is on the order of the distance between

two parallel yarns, the circumferential yarns were approximated to be

linear. As the distance between interlacings increases, the curvature of the

circumferential yarns increases and this approximation cannot be used.

Another assumption is that the difference in distance between z yarns in

the adjacent concentric rings is insignmicant.

Utilizing the above assumptions, numerous textile structures possess

holosymmetric cubic symmetry. This symmetry state is found in certain

three dimensional braids, nonwovens, and knits. An Euclidean braid with

100% braiding yarns and the fourfold body diagonal lay-in architecture of

the Omniweave with a yarn orientation angle of 45 degrees with respect to

three orthogonal axes, possesses this symmetry. This symmetry is also

possessed by the XYZ geometries of Omniweave, King's nonwoven,

Kallmeyer's nonwoven, the thick weave with a web angle of 00, and

Autoweave when all the constituent yarns possess similar circular cross-

sectional areas and are therefore equidistant.

There are a number of symmetry elements in the holosymmetric cubic

state. The simplified unit cell of these two geometry types and their point

group symmetry is shown in Figure 3-5. The position of some of these

symmetry elements is projected onto the cubic unit cell in Figure 3-6.
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Simplified Unit Cell for Simplified Unit Cell for
Body Diagonal Geometries XYZ Geometries
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m3m Symmetry Shown by Above Unit Cells

Figure 3-5
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The addition of two orthogonal lateral lay-in yarns in the xy plane to the

unit cell of an Euclidean braid comprised of 100% braiding yarns 100%

reduces the x and y tetrad axis of symmetry to a diad axis, and also destroys

all triad axis of symmetry. This unit cell possesses holosymmetric

tetrahedral symmetry. This symmetry state also occurs with a two-step

braid possessing equal a and b lattice parameters, with the body diagonal

geometries possessing a braid angle not equal to 450 in one of the orthogonal

planes, and with the XXYYZ Aerospatiale geometry. The 4/mm n

symmetry corresponding to this state and the unit cell of these geometries

is shown in Figure 3-7.

Another common symmetry type is mmm, which is the holosymmetric

symmetry state of an orthorhombic unit cell. This symmetry state is

possessed by: Crawford's nonwovens, Euclidean braids with one lateral or

longitudinal lay-in, body diagonal geometries with the braid angle not equal

to 450 in all orthogonal planes, a Two-Step braid with unequal lattice

parameters, and the XXYZ fiber architectures of Aerospatiale, King, and

Fukuta. Crawford's nonwovens possess this symmetry state since the

combination of three orthogonal and either four or eight diagonal yarns

reduces all symmetry axes to diads. The XXYZ fiber architectures are

mmm since the presence of two x yarns for every unit cell destroys all

tetrad and triad axes of symmetry. The highest axis of symmetry for the

jholosymmetric orthorhombic geometry is diad. The unit cells of fiber

architectures possessing this symmetry and the projection of the mmm

(point group onto an orthorhombic cell is shown in Figure 3-8

I
I
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The remaining textile structures do not possess three dimensional

symmetry. Although there is through thickness fiber integration, the unit

cell shape of these structures is similar to that of a laminate. Like

laminates, these structures possess symmetry in the xy plane, not in the

through thickness planes.

The Effect of Symmetry on the Elastic Stiffness Matrix

The elastic stiffness matrix describes the relationship between strain and

stress in a material at a specific point. The theory of elasticity governs the

creation of the stiffness matrix. The as§umptions made in the theory of

elasticity are: the body is a continuous medium, strains experienced by said

body are small, the stress/strain relationship is linear, initial stresses are

ignored, and deformation is reversible.

Strain is a measure of the deformation experienced by a body. The strain

state of a point can be expressed as a second order tensor. The components

of this tensor are shown below.

L Exx exy Exz

= ,x yy Cyz (3-1)

CzX ey en
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CHAPTERFOUR

GEOMETRIC MODELLING OF 3D FIBER ARCTEt CTURES

Introduction

In this chapter the unit cell geometries of various 3D fiber architectures are

modelled. In all the models the yarns are assumed to be incompressible

and to possess a circular cross-sectional krea. Except where noted, all

yarns comprising the fiber architectures are identical. The effect of

varying geometric parameters on the fiber volume fraction is studied. Also

the percent fiber volume fraction in different fiber orientations is stated.

The effective volume of fiber oriented towards an arbitrary angle is given for

each fiber architecture.

Multiaxial Warp Knits

The MWVK possesses an orthogonal unit cell. The a and b parameters of a

MWK unit cell are shown in Figure 4-1. In this figure, the dashed box

contains the ab plane of one unit cell. The length of the a parameter is

equivalent to the distance between the centers of two adjacent orthogonal

yarns in the x direction. The length of the b parameter is equivalent to the

distance between the centers of two adjacent orthogonal yarns in the y

direction.
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The Unit Cell of a Multiaxial Warp Knit

Figure 4-1
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The circles in each unit cell in Figure 4.1 represent the intersection of the

knitting yarns with the ab plane. The knitting yarn is assumed to have a

cross-sectional area one tenth the size of the lay-in yams. The shape of

each knitted loop completed by the knitting yarn is modelled as an ellipse.

Figure 4.2 shows the relationship of the geometric parameters of the

knitting yarn ellipse to the MWK unit cell. As shown in Figure 4.1, there

are four spots in each unit cell where a knitting yarns intersects with the ab

plane. The three dimensional shape represented by each circle in the unit

cell is one-half of an ellipse. Thus there are two knitting yarn ellipses in

each unit cell. The length of knitting yarn in the unit cell is equal to the

circumference of two ellipses. The circumference of an ellipse is equal to:

7E/2

C 4aeJN1- e2sin2od4o = 2rae( 1- 0.25e2 - .0470)

with ce = be2  (4-1)ae

Each MWK cell consists of yarn lay-ins in the x, y, and +/- 9 directions.

The c parameter of the MWK unit cell is equivalent to 4D + K. D is defined

as the diameter of the lay-in yarns and K is defined as the diameter of the

knitting yarn. This distance results from the four lay-ins, and the one-half

diameter of the knitting yarn on the top and bottom of the unit cell.

The length of the a parameter of the MWK unit cell is D + S, where S is the

distance between yarns of like orientations. The length of b depends on the

angle of the bias yarns. If 0 is 450, b = a. When 0 is not 450, b = (D +S)tanO.



71

a=(4D +K)/2

b,. (DfcosO + K)/2

The Elliptical Path of a Knitting Yarn in a Multiaxial Warp Knit

Figure 4-2
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The two angled lay-ins each possess a length of La = a/cosO = (D + S)Icos0.

The fiber volume fraction of yarn in the unit cell is equal to:

r D2 xK2

Vf= (a+b+2La)-4 +2C4 (4-2)

abc

where n is the cross-sectional area of a yarn

with diameter K

The fiber volume fraction of yarn in the unit cell is the volume of yarn in the

unit cell divided by the unit cell volume. The volume of a MWK unit cell is

the product of the three unit cell parameters.

The effect of varying the angle of the angled lay-ins on the fiber volume

fraction is plotted in Figure 4-3. In this plot, the space between adjacent

yarns in the x direction is assumed to be one yarn diameter and the

diameter of the knitting yarn is assumed to be one-tenth that of the lay-in

yarns. The fiber volume fraction increases rapidly after 450. This increase

is a result of the a parameter being greater than the b parameter. In this

region of the curve the space between yarns in the b direction is decreasing.

Varying the angle of the bias yarn changes the fiber volume significantly.

Figure 4-4 plots the effect of varying the distance between the yarns in the

closest-packed direction. The dependence of fiber volume fraction on the

distance between closest-packed yarns is harmonic. The fiber volume

fraction between two integral S values approximately decreases by (1I(Sii+ 1)

with SH being the higher S value. The biggest reduction in fiber volume

L_
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fraction, 50%, occurs in the region of zero to one yarn diameter of space

between the closest-packed yarns.

The effect of assuming a different relative diameter of the knitting yarn to

that of the lay-in yarns for a MWK with 0 = 450 is shown in Figure 4-5.

Varying K by an order of magnitude of ten changes the fiber volume

fraction by 11%.

Orthozonal Fiber Architectures

XYZ Geometry

In this section the XYZ, XXYYZ and the XXYZ orthogonal geometries will

be discussed. The XYZ geometry possesses a cubic unit cell. The geometry

of each <100> plane in this cell is shown in Figure 4-6. As shown in this

figure, the unit cell parameters are equal to 2D, where D is the diameter of

the constituent yarns. The fiber volume fraction of the XYZ geometry

equals:

3(2DXric) 2/4)
Vf = -3(2------ 0.59 (4-3)

XXYZ Geometry

The second type of orthogonal yarn geometry, XXYZ, possesses a

tetrahedral unit cell. The (100) plane of an unit cell with this fiber

architecture is shown in Figure 4-7. This cell differs from the unit cell of

the other orthogonal geometry by the presence of two x direction yarns in

each cell. This presence causes the lattice parameter a to equal 3D. Since
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Figure 4-6
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the other lattice paramet.,rs are not effected by the second x yarn, they

remain 2D. The fiber volume fraction for this cell is the same as with the

XYZ geometry. The expression for this value is:

xD3
(4+3+2) 4

Vf- -2j-6- 0.59 (4-4)

XXYYZ Geometry

The final type of orthogonal yarn geometry is XXYYZ. This geometry is

similar to the XYZ geometry depicted in Figure 4-6 except here the full

diameter of the x and y yarns is included in each unit cell edge. Thus a = b

- 3D while z remains 2D and there are two x and y yarns per uirut cell.

tD)3

(6+6+2) 
T

Vf 18D3  - 0.61 (4-5)

Bod_ Dia onal Geometries

In this section the similar unit cells of 3D braids with 100% braiding yarns,

and the 4 directional lay-in Omniweave are discussed. These unit cells are,

in general, orthogonal. For the 3D braid an important consideration in

determining the unit cell parameters is the process by which the braid is

formed. In Figure 4-8 the unit cell of a 3D braid wit. a 450 braid angle is

shown along with the track and column movements necessary to form this

unit cell. The compacting action drastically alters this unit cell. This

I
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action compacts the bottom body diagonal pair against the top body diagonal

pair, pulls the eight corner loops out of this unit cell into adjacent unit

cells, and both inverses as well as reduces the amount of curvature present

in the constituent yarns. The resultant unit cell is shown in Figure 4-9.

The offset of the two body diagonal pairs in the xy plane is the result of

subsequent track and column motions. The unit cells of the Omniweave

are determined by the direction of the lay-ins. The simplified unit cells

shown in Figure 4-10 will be used to describe the body diagonal geometries.

The total length of yarn in each unit cell is four times the length of the body

diagonal in that cell. In this model we will also assume that the unit cell is

tetragonal. This is the case when the braiding motion is an one by one

track and column movement and the constituent yarns possess a circular

cross-sectional area. For the tetragonal unit cell a is equal to b but is not

equal to c. c can be described as

c = a tane (4-6)

e is the angle of the side face diagonal. which is equal to the compliment of

the braid angle.

The length of a body diagonal in this unit cell is:

LB = V2a 2 + a 2tanO (4-7)

I
I
I
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Euclidean Braid Unit Cell After Compacting

Depicting the Effect of Subsequent Column Movement
on the Relative Position of the Two Body Diagonal Pairs

I
I Figure 4-9
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Simplified Euclidean Braid Unit Cell

j Figure 4-10
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The fiber volume fraction is equal to:

2+tan2e ,D 2  (4-8)
Vf= a2 tane

Since there is no close packed direction in this unit cell, there is no absolute

relationship between the constituent yarn diameter and the lattice

parameters. Figure 4-11 plots the effect of varying a in units of D on the

fiber volume fraction with a braid angle of 300. The form of this function is

Vf(a) = T/a2 , where T is a constant. As the braid angle is increased, T

increases and subsequently Vf(a) increases for a specific a value.

Figure 4-12 plots the effect of varying the braid angle on the fiber volume

fraction with the parameter a equal to 3D. The fiber volume fraction

steadily increases as the braid angle is increased. The increase in the

value of dVf/d(braid angle) above 450 results from the lattice parameter c

being less than a in this region. From this plot, it is apparent that there is a

minimum fiber volume fraction. This value depends on the value of a

assumed. The minimum fiber volume fraction decreases as the value of a

increases.

Combined Geometries

Euclidean Braid with lateral lay-ins

Combined geometries are possessed by unit cells with both orthogonal and

bias direction constituent yarns. These geometries are possessed by

Euclidean braids with longitudinal or lateral lay-ins, Two-Step braids, and

"I
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Crawford's nonwovens. In the case of the Euclidean braid with lateral lay-

ins, the presence of lateral lay-ins alters the fiber volume fraction equation

4-8 in the manner shown below.

(4V42+ta;x20 +n)rD

Vf= 4a 2 tan D

In this equation, n represents the number of lateral lay-ins. A lateral lay-

in in either the x or y directions possesses length a (assuming a tetrahedral

unit cell). The presence of the lateral lay-ins increases the T value of Vf(a)

for a specific a, as compared to a braid with 100% braiding yarns. The fiber

volume fraction as a function of the braid angle for 100% braiding yarns,

one lateral lay-in, and two lateral lay-ins is plotted in Figure 4-13. The

effect of the lay-ins on the fiber volume fraction increases as the braid angle

increases. This occurrence is attributed to the decrease in the relative

length of c/a as the braid angle increases.

Euclidean Braid with Longitudinal Lay-ins

The addition of longitudinal yarns alters equation 4-8 to:

(44]2+tan +tD2
Vf = (4-10)4a 2 tan{}

The additional atanO term accounts for, c, the length of the longitudinal

yarn in the unit cell (the a is factored out in 4-8). The presence of the

lateral lay-ins creates a T value of Vf(a), for a specific a, larger than that ofI
I
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a braid with one lateral lay-in, but smaller than with two lateral lay-ins.

The fiber volume fraction as a function of the braid angle for 100% braiding

yarns and for a braid with longitudinal lay-ins is plotted in Figure 4-14.

The effect of the lay-ins on the fiber volume fraction decreases as the braid

angle increases. This occurs since thp relative length o. c/a decrepes as

the braid angle increases.

Two-Step Braid

While the two step braiding process possesses a similar geometry to the

Euclidean' braid with longitudinal lay-ins, they are not identical. The

difference in these two unit cells arises from tlie two different loom designs.

The different loom designs are shown in Figure 4-15. The ratio of

longitudinal yarns to braiding yarns is different in both processes. For the

two step braid the ratio must be:

L RC
B - R + C> 1  (4-11)

where L is the number of longitudinal yarns, B is the number of braiding

yarns, R is the number of rows, C is the number of columns. In the 3D

braid the number of longitudinal yarns can vary from zero upto the number

of braiding yams.

L
R 1 (4-12)

The projection of the component yarns on the (001) planes for the 3D braid

with longitudinal lay-ins and the two step braid are shown in Figure 4-16.!
I
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The labels T and B on the two-step braid figure represent the top and bottom

plane of a unit cell. The length of each bias yarn is:

LB = 2 (a-D)2 + c= 2 (a-)2 + a2 tan20 (4-13'

Where 0 is the angle relating a and c. The expression for the fiber volume

fraction for this geometry is:

D_?) 2ta

4 2 (a-2a)2 + 2tn + 2atan0icD 2

4a3 tan4

The fiber volume fraction as a function of braid angle is plotted for the Two-

Step braid and the Euclidean braid with a longitudinal lay-in in Figure 4-17.

The Two-Step braid possesses a higher minimum fiber volume fraction

since there is a higher precentage of longitudinal yarns in this fiber

architecture. Since a higher percentage of the fiber volume fraction in the

Two-Step braid arises from the longitudinal yarns it is less dependent on 0.

Crawford's Nonwovens

Crawford's 7D and liD nonwovens are combinations of orthogonal and

diagonal yarn geometries. These geometries behave in a similar manner to

the above mentioned combined geometries. Figure 4-18 plots the fiber

volume fraction as a function of the bias yarn orientation for Euclidean

braids with longitudinal and lateral inserts as well as the 7D body diagonal

geometries. The fiber volume fraction function for the 7D body diagonal

gcometry can be expressed as:I
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I
(4"2+tan 20 + 2 + tanO)iD 2  (4-15)

V4a
2 tano

In this relationship, it is assumed that a = b.

For the face diagonal 7D geometry the length of each face diagonal equals:

LF= 4 (4-16)

Using this relationship, the fiber volume fraction for the face diagonal 7D

geometry is expressed as:

= 1(4Vl+tan 20 + 2 + tanO)*D 2  (417)
4a 2 tan(

The fiber volume fraction for the lD geometry can be determined in a

similar fashion.

(4V 2+tan 2o +4- i+tan 20 + 2 + tanO) (D2
Vf = atne(4-18)

4a 2 tan0

Figure 4-19 plots the fiber volume fraction as a function of the face diagonal

angle with the lattice parameter a equal to 4D for the three Crawford

geometries. The minimum fiber volume fraction of the 11D geometry is

very high. The assumption that all the constituent yarns intersect at the

center of the unit cell is partially responsible for this value. There doesn't

appear to be much difference between the behavior of the 7BD and the 7FDI
I
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geometries as a function of orientation angle. The liD geometry is

translated vertically from these curves but appears to possess the same rate

of volume fraction increase.

Three Dimensional Weaves

The possibilities of unit cell geometries with three dimensional weaves is

numerous. For this model, weaves with a plain weave geometry in the xy

plane are studied. The effect of crimp on the fiber volume fraction is

assumed to be small enough that the plain weave can be modeled as a x/y

lay-in geometry.

Figure 4-20 is a schematic of the xz plane of a three dimensional weave.

The through thickness warp yarn is known as the web yarn. The surface

yarns form a traditional plain weave on the surface of the fabric. Since the

presence of the surface yarn is optional and does not effect the geometry of

the interior unit cells, it will be ignored in this model. The geometry of

these weaves is described by a series of unit cells. These unit cells vary by

the number of web yarns in them and the orientation of these yarns. The

number of web yarns can vary from zero to two in each unit cell. The two

possible orientations of the web yarns is shown in Figure 4-21.

A final assumption that is made is that the lattice parameters of all unit

cells are the same. This assumption is sound when there are many cells

with web yams, since these cells then tend to support the cells without web

yarns. The lattice parameters in the xz plane, a and c, are equal to the

sum of one fill yarn diameter plus a bias yarn diameter. The bias yarn

!
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a =(1 + 1isina ) D

C= 1 + lcosa)D

XZ Plane of Two 3D Weave Unit Cells Depicting Possible
Web Yarn Orientations and the Unit Cell Lattice Parameters

Figure 4-21
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diameter depends on the web angle. The relationship of this angle to the

lattice parameter is shown in Figure 4-21. Thus a and c are equal to:

a=(1+ .__I )D (4-19)

c = ( + 1)D (4-20)
cosa

Where a is defined as the web angle. Since the presence of the web yarn has

no effect on the b dimension, b = 2D, as in a XYZ geometry. When a = 00, the

thick weave geometry is XYZ orthogonal with a:= b = c = 2D and V= 0.59.

The fiber volume fraction of a unit cell with no web yarn is:

1+ 1)cosax sinG
Vf= 1 1 (4-21)

8(1 +---)(1+---)
sina coscx

The assumption is made that the web yarn enters the cell at a/2 and exits at

c/2. The length of a web yarn in a unit cell is equal to:

L''= a c
Lt= (2)2 +( )2 (4-22)

Correspondingly the fiber volume fraction of a unit cell with one or two web

yarns is:

!
I
!
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1 1(4 ++ ---- + nL. ) 7c
cosci slnci

Vf= 1 1 (4-23)8 (1 +--1--)(1 + )

sin(i cosa

where n is defined as the number of web yarns per unit cell.

Figure 4-22 plots the fiber volume fraction as a function of a for a unit cell

with one, two or no web yams. There is a maximuin fiber volume fraction

at 450 for all unit cells. The sharp drop in Vf in the limit of 900 is attributed

to cosa going to 0 in this region. Figure 4-23 plots the effect of varying the

relative proportion of cells with and without webryarns when a equals 450 by

using the following function:

V(P) = P Vf(n=0) + (1-P) Vf(n=2) (4-24)

n is the number of web yarns per unit cell

Geometric IsotroDy

A fiber architecture is considered to possess geometric isotropy if the

variation in effective fiber volume fraction directly contributing to a loading

direction is constant for any arbitrary angle. The effective fiber volume

fraction of a fabric is defined as the fraction of fibers aligned in the proper

I direction in order for the applied load to be transferred to the fibers. For

this model of geometric isotropy, the load bearing capacity of a fiber in the

transverse direction is assumed to be zero. This capacity is assumed to be

one in the longitudinal direction. These assumptions can be applied since
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the load bearing capacity of a yarn in the transverse direction is many

orders of magnitude lower than that in the longitudinal direction.

The geometric isotropy of the various fiber architectures is described by

plotting the effective fiber volume fraction at any arbitrary angle in the xy,

xz, and yz planes. The angle I is defined as the projection of the arbitrary

angle onto the plane being analyzed. (p is defined as the angle a yarn

orientation makes with the axis normal to the plane in question. 0 is the

angle the projection of a yarn orientation makes with a given plane.

The geometric isotropy in the three orthogonal planes is plotted as a

function of the arbitrary angle in the three orthogonal planes. In each plot

of the geometric isotropy in an ij vlane, i corresponds to the horizontal axis

and j represents the vertical axis. For a totally isotropic material, the

geometric isotropy plots would possess a circular shape. The greater the

eccentricity of the plot, the higher the degree of anisotropy present.

Geometric isotropy plots are made of the different fabric geometries

described in this chapter.})

I
Multiaxial War, Knits

Since the contribution of the knitting yarn to the total fiber volume fraction

is typically 1%, the presence of the knitting yarn is ignored when

calculating the geometric isotropy. There arc four yarn orientation

directions of the lay-in yarns comprising a MWK. These directions and the

fractional contribution they make to the total fiber volume fraction is

expressed as:

1
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i

Vf = Vx + Vy + V+o + V-) = 2Vn ( + ) (4-25)
coso

Vx
since Vx = Vy, V.e = V+o and V+ -

cose

For an arbitrary angle, y, the percent volume fraction in the xy plane is:

cos( 0 "y) I+ cos(0+y) I)(-6

V(Y) = Vn (I cosy I + I siny + cos) cos ) (4-26)
cose cose

Each term of 4-25 represents Vx , Vy , V-0, and Y+0 respectively. In Figure 4-

124 the geometric isotropy in the xy plane is plotted for theta is equal to 45

and 30 degrees. There is a local minimum orthogonal to every principal

yarn orientation direction in the plane. This minima is greater for the ± 450

direction than for the ±300 direction. In the ±450 case the bias yarns are

orthogonal to each other and do not supply any effective load carrying

Icapacity to each other.

The geometric isotropy in the xz and the yz planes is similar. The effective

I fiber volume fraction as a function of 0 in these planes is described by:

I V(O) = V(y) I cosO I (4-27)

The geometric isotropy of these planes is shown in Figure 4-25. The effect of

the knitting yarn on the geometric isotropy in the xz and the yz planes was

determined for a fiber volume fraction of 1% knitting yarn. This presence1
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The Geometric Isotropy of a MWK in the xz or the yz plane
Figure 4-25
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had a small effect on the geometric isotropy in the regions of y = -450 to 450,

and 1350 to 2250. In the other regions there was no significant effect.

XYZ Geometry

The distribution of the constituent yarn orientation of the XYZ orthogonal

geometry is similar for all three yarn directions. This distribution is given

below:

0.33Vf = Vx = Vy = Vz = Vn (4-28)

The geometric isotropy of the type one orthogonal geometry is similar for all

three orthogonal planes. This relationship can be expressed as:

V() = Vn (I cosy I + I siny I ) (4-29)

The geometric isotropy of XYZ architecture is plotted in Figure 4-26. Local

minima occur when constituent yarns are orthogonal to each other. In the

XYZ geometry yarns are orthogonal to each other on the principal axes.

XXYZ Geometry

Because of the relative orthogonality of the constituent yams in a XXYZ and

a XXYYZ geometry, the geometric isotropic curves for these geometries

possesses the same orientation angle for local minima as the XYZ

geometry. The percent fiber volume fraction of each unique yarn orientation

is dissimilar for these geometries. The geometric isotropy curves differ by

I
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the magnitude of the effective fiber volume fraction in each plane. The fiber

volume fraction distribution of the XXYZ geometry is:

Vf = Vx + Vy + V, = 4Vn + 3Vn + 2Vn = 9Vn (4-30)

The geometric isotropy of the xy plane can be expressed as:

V(Y) = Vn (41 cosy 1+ 31 siny ) (4-31)

The geometric isotropy of the xz plane can be expressed as:

V() = Vn (41 cosy 1+ 21 siny 1) (4-32)

The geometric isotropy of the yz plane can be expressed as:

V(Y) = Vn (31 cosy 1+ 21 siny 1) (4-33)

XXYYZ Geometry

The geometric isotropy of these three planes is plotted in Figure 4-27. The

geometric isotropy of the XXYYZ geometry is described in a similar

manner. The fiber volume fraction distribution of the XXYYZ geometry is:

Vf=Vx+Vy+Vz =3Vn+3Vn+2Vn=8Vn (4-34)
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The geometric isotropy of the xy plane can be expressed as:

V(Y) = Vn (31 cosy 1+ 21 sinyl ) (4-35)

The geometric isotropy of the xz and the yz planes can be expressed as:

V(y) = Vn (31 cosy 1+ 21 sinyl ) (4-36)

Body Diagonal Geometry

The fiber volume fraction distribution of a body diagonal fabric geometry is

equally divided by the four yarn orientations of this geometry. When this

geometry is present in an cubic unit cell, the geometric isotropy is

equivalent in all orthogonal planes. The geometric isotropy can be

expressed as:

V(y) = 0.5 I sin(54.74) I ( cos(45-y) I + I cos(45+y) 1) (4-37)

By the symmetry of the fiber architecture, the angle made with the axis

normal to the plane, 35.260, is the same for all yarn orientations. The

projection of the four yarn orientations reduces to two individual

orientations in a specific plane. The two cosine terms reflect these

orientations.

The geometric isotropy of the body diagonal geometry with a tetrahedral

unit cell in the xy plane is described by the general form of the above

equation, which is given below.

I
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V(y) = 0.5 I sin I (I cos(e-y) I + I cos(e+%y) I) (4-38)

* = an "1 ( - (4-39)
tanO

The isotropy of the xz and yz planes differs from that of the xy plane

through possession of a different value for 0. The geometric isotropy for the

body diago-iia geometry with a angle of 450 in the xy plane and 600 in the xz

and yz planes is shown in Figure 4-28. There is a significant increase in

the anisotropy with an angle of 600, since c is then significantly greater

than a. When 0 = 600 local minima occur at 30, 150, 210, and 330 degrees.

These angles are orthogonal to the two yarn orientations in the plane.

Euclidean Braid with Lateral Lay-ins

The presence of lateral lay-ins only effects the xy plane isotropy of an

Euclidean braid. The geometric isotropy of this braid with two orthogonal

lateral lay-ins can be expressed as:

V(y) = V B sinai (I cos(8-y) I + I cos(+y,) I)

+ 2 ( I cosy I + I siny ) (4-40)

where Vf = VB + VLat

The exact value of VB can be determined with the following equation:

I
I
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VB= 1 - 2 (4-41)
2+tan2O + 2

Figure 4-29 plots this geometric isotropy. The presence of the lateral yarns

decreases the curvature of the plot in each segment and creates an

inflection point on the axes.

Euclidean Braid with a Longitudinal Lay-in

The presence of longitudinal lay-ins effects the xz and yz plane isotropy for

an Euclidean braid. The geometric isotropy of this fabric can be expressed

as:

V(y) = I sino I (I cos(O-y) I + I cos(e+y) I)

+VLong I siny 1 (4-42)

where Vf = VB + VLong

The exact value of VB can be determined with the following equation:

VB = 1 - tan(4-43)
2+tan2o + tanG

Figure 4-30 plots this geometric isotropy for a theta of 600 in the xz plane.

The presence of the longitudinal lay-in in the z direction creates additional

local minima on the x axis.
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Two-Step Braid

The relative value of this minima is greater in the two step braid as a result

of the larger proportion of longitudinal lay-ins. The geometric isotropy of

the xz plane of the two-step braid is shown in Figure 4-31. The isotropy in

this plane is similar to that in the yz. The geometric isotropy is modelled

using:

VBias

V('Y) = I sinI (I cos(O-y) I + I cos(o-fy) I)

+VLong I siny1 (4-44)

tan-1 atan0
=) ta - (- - (4-45)2 (a- D-)2

Vf = VBias + VLong (4-46)

2atan0
VBias = 1 - 2aaO(4-47)

2atanO + 2 (a- -)2 + a2 tan20

0 is defined as the braid angle, a is a lattice parameter, and D is the yarn

diameter used to calculate the geometry of this cell in 4-13.

The xy plane geometric isotropy of the two-step braid is shown in Figure 4-

32. This plot is generated with the following function, when a tetrahedral

unit cell is assumed:

I
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V 2ia I sin4I (I cos(O-y) I + I cos(G+y) 1) (4-48)

where 4 = tan-l( 
)

atanO

Since the a and b lattice parameters are equal in this plane, theta equals 45

degrees. This function possesses the same form as equation 4-33, for the

geometric isotropy of the Euclidean braid with 100% braiding yarns in the

xy plane.

Crawford's 7D Body Diagonal Geometry

Crawford's 7D body-diagonal geometry, plotted in figure 4-33, possesses a

similar geometric isotropy to the braid with lateral lay-ins in the xy plane

and to the braid with longitudinal lay-ins in the xz and the yz planes. The

geometric isotropy of this fiber architecture can be generated by utilizing

equations 4-40 and 4-42 for the respective planes. The determination of the

fiber volume fraction coefficient is made using the following relations.

Vf = VB + VLong + VLat (4-49)

VLat 2 (4-50)
442+tan 20 + 2 + tanO

I atanO

VLong (4-51)
4"2+tan2O + 2 + tanOI
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VB = 1 - VLong - VLat (4-52)

Crawford's 7D Face Diagonal Geometry

The geometric isotropy of Crawford's 7D face diagonal geometry in the xy

plane when the lattice parameter a = b, possesses no local minima at 450.

This phenomena occurs since the projection of the face diagonal yarns into

the orthogonal planes is parallel either to one of the orthogonal axes. The

function used to plot the geometric isotropy in the xy plane is:

VFV(y)=Vx IcosyI + VyIsiny I+- -cos( IsinyI+ I cosy1)(4-53)

Vf = Vx + Vy + Vz + VF (4-54)

vx =vy = 1 ( 0 (4-55)
2 + tan + 1+tan 2G

V tan (4-56)
2 + tanO + i l+tan20

VF=I-VX -V -V z (4-57)

i Corresponding the geometric isotropy of the xz plane is:

V(y)= V Icosyl + VzIsiny I+- E( Icos(O+7) I+ Icos(O-Y)I)

(4-58)

!
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The geometric isotropy of the yz plane is:

V() = Vy I cosy I + Vz I siny I + .( I cos(") I + I cos(O-y) I)

(4-59)

The geometric isotropy of the xz and the yz planes are equivalent if a = b.

The factor that is divided into VF differs from that of the xy plane since only

one-half of-the face diagonals are projected into either the xz or the yz

planes. The different isotropy plots for this fiber architecture are shown in

Figure. 4-34

Crawford's 11D Geometry

The xy plane isotropy of Crawford's lD geometry possesses many local

minima as a result presence of the body diagonal, face diagonal, and

orthogonal yams. Figure 4-35 plots the isotropy of this geometry for the xy

and xz planes. Since a tetrahedral unit cell is assumed, the xz and the yz

planes are equivalent. The function used to produce the xy geometric

isotropy plot is:

VFV() = V. I cosy I + Vy I siny I+ 2 cosO ( I siny I + I cosy I)

+ Y-- I sinI (I cos(O-y) I + I cos(O+y) ) (4-60)

with tan- 1 (-n0)
tanG

In the xz and the yz planes (the 12 planes):

I
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XY Plane

I fxz =yz Plane
r. . .2 2 .4with 0 d

The Geometric Isotropy of Crswforda 7D Face Diagonal Geometry
Figure 4-34
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The Geometric Isotropy of Crawfords 11D) Geometry
Figure 4-35
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VF VB n I)( oe-I+
V(y) =VllcosTI + V21siny I(+ + ,sinol)(l cos(e-,)l +

I cos(e+Y) I) (4-61)
taneO

with 4=tan- t -

The principal fiber orientation directions comprise the fiber volume fraction

in the following manner:

Vf =V, +V+Vz+VF+VB (4-62)

VX=VY=(4-63)
2 + tane + -+tan 2 e + - 2+tan2(

tane
V= (4-64)

2 + tane + Ni+tan2 e + -T2+tan20

1 +tan2 e

VF = (4-65)
2 + tane + 1-+tan 2q + 42+tan 2O

VBV= I -Vx - Vz- VF (4-66)

3D Weaves

The presence of the web yarns in the three dimensional weave geometry

has the same effect on the geometric isotropy as the face diagonal yarns of

the combined geometries. Each plane in this fiber architecture possesses a

different geometric isotropy. The functions to generate these different
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isotropies for a thick weave with two web yarns per unit cell are given

below.

In the xy plane:

V(y) =VI cosyI +VyI sinyI +VwI cos cosyI (4-67)

In the xz plane:

V(y) =V, I cosy I + I cos(a + y) I + I cos(a- y) I (4-68)

In the yz plane:

V(y) =Vy I cosyl (4-69)

where:

tan- ( a ) (4-70)

a is defined in equation 4-18 and c is defined in 4-19.

Vf =V + Vy + Vw (4-71)

1+ sinaz
Vx = 1 1 (4-72)

2+-1-+ -1 + 2L
slnoc cosa

VW =2Lw
Vw - 1 1 (4-73)
2+-+- +2Lw

sina cosal

!
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Vy = 1 - V" - Vw (4-74)

Figure 4-36 plots the geometric isotropy of these three planes. The yz plane

possess an isotropy similar to that of the MWK in this plane. The xy and

the xz planes possess minima at intervals of 450 as a result of the presence

of the web yarns.

I
I
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I The Geometric Isotropy of a Three Dimensional Weave
Figure 4-36
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CHAPTER FIVE

MECHANICAL MODELLING

The 3-D fibrous composite can be regarded as an assemblage of a finite

number of individual structural cells. Each individual cell is the smallest

representative volume taken from the fiber architectural system. It is then

treated as a space structure with the endowed representative architecture,

rather than a material with a set of effective continuum properties. The

basic idea is to identify the unit cell's nodal supports, similar to the nodal

points of a conventional finite element. By the introduction of the principle

of virtual work in solid mechanics and structural analysis, the matrix [k],

the stiffness of the cell can be derived to relate nodal displacement vector to

nodal forces for a cell.

Therefore, the key step in the formulation of the problem is the

identification of the unit cell's nodal points. In this model, the yarns which

pass by a node are considered as intersected each other and hence, can be

treated as either pin-jointed two-force truss members or rigid connected

frame members. With this postulate, the interaction at the yarn

interlacing is not considered in this modelling. Thus, for instance, by

I
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treating a unit cell specifically as a pin-jointed space truss , a 3-D truss

finite element technique may be employed for the mechanistic analysis.

As for the matrix in a composite, it is usually used as load transfer

medium. In order to include the effect of matrix, which is subjected to

tension or compression under the deformation of yarns, the matrix is

assumed to act as rod members. Each rod member connects the two ends of

a given set of corresponding yarns in the unit cell. Hence, the matrix plays

a role in restricting the free rotation and deformation of yarns.

The methodology of the finite element modelling is presented in the

following. First of all, let aij represent the value of member deformation qi

caused by a unit nodal displacement rj. The total value of each member

deformation caused by all the nodal displacements may be written in the

following matrix form:

(q} = [a] {r} (5-1)

where [a] is called the displacement transformation matrix which relates

the member deformations to the nodal displacements. In other words, it

represents the compatibility of displacements of a unit cell.

I
The next step is to establish the force-displacement relationship within the

unit cell. The member force-deformation relationship can be written as:

!
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[Q] = [K'] (q) (5-2)

where [K'] is the stiffness matrix of a member

The principle of virtual work states that the work done on a system by the

external forces equals the increase in strain energy stored in the system.

Here, the nodal forces can be considered as the external forces of the unit

cell. Therefore, if {R) represents the nodal force vector, it follows that

(r}W{R} = {5&T{Q} (5-3)

where 18T) and {8} are virtual displacement and deformation, respectively.

From Equations.(5-1) and (5-2), the following equations can be derived

through matrix manipulation:

(R) = [K](r) (5-4)

where: (R) = nodal forces

[K] = [a]T[K'I[aI = stiffness matrix of the unit cell

(r) = nodal displacements

I
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Using Equation (5-4), the nodal force and the nodal displacements of a unit

cell are related by the stiffness matrix of the unit cell.

In the above mentioned methodology, the stiffness matrix of a unit cell was

formalized by use of the compatibility matrix [A] and the concept of

principle of virtual work. With this approach, the entire stiffness matrix

[K] was assembled by the triple matrix multiplication given as Eq.(5-4). For

truss structure or simple fiber architecture of a unit cell, the compatibility

matrix can be obtained without rigorous calculations. However, when the

fiber architecture becomes complicated or a frame unit cell is being

analyzed, it involves a large compatibility matrix where many of the

elements are not easy to be evaluated correctly. From the computer

programming points of view, neither the generation of this matrix [A] nor

the multiplication process for [K] matrix assembly would be suitable to be

explicitly laid out. A better methodology which combines the ideal of

previously mentioned approaches and computer-oriented techniques is

presented in the following, which is known as the Direct Stiffness Method.

In this method, the end displacements of each member are treated with

respect to structural (global) coordinates. In this way all of the geometric

transformation will be handled locally, and the stiffness matrix can be

assembled by direct addition instead of by matrix multiplication. Thus, the

assembly of the joint stiffness matrix may be stated as

1
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n

K= JKi (5-5)
i=1

where n is total number of the members, Ki is the i-th member stiffness

matrix with end-forces and displacements in the directions of structural

coordinate. Therefore, the member stiffness matrix should firstly be

obtained with respect to the member axes, and then transformed in

reference to the structural coordinates.

The member stiffness matrix is obtained by a unit displacement method.

The unit displacements are considered to be induced one at a time while all

other end displacements are retained at zero. The unkown displacements

at each joint of a truss consists of three components, namely, the x, y and z

components of the joint translations. The unkown displacements at each

joint of a frame consists of six components, namely, the x, y and z

components of the joint translations and the x, y and z components of the

joint rotations.

The member stiffness matrices of the space truss and space frame in

member coordinates are given in Figure 5-1 and Figure 5-2, respectively.

The elements of the jth column in the matrices represent the forces

required to hold the unit displacement in the jth direction, or, each column

in the matrix represents the forces caused by one of the unit displacements.

!
I
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The present modelling will consider the high symmetry composites as

frame structures. In this sense, the axial, flexural and torsional stresses

and deformations of a member may be induced under tensile load. In other

words, the modelling takes into consideration of axial, bending and torsion

of yarns. In general case, if the member axes are not coincident with

structural axes, a rotation transformation matrix should be performed to

obtain the member stiffness in structural coordinates.

Let the spatial coordinate system of a prismatic member be given in Figure

5-3. The direction cosines ri, si and ti relate the structure axes (Xs, Ys, Zs)

to the member axes (Xm, Ym, Zm). The coordinate transformation between

Xm, Ym, Zm and Xs, Ys, Zs may be written as

Xm} [ris ti {Xs}
Ym r2 s2 t2 Ys
Zm r3 S3 t3J Zs

I
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" Translation

EA/L 0 0 -EA/L 0 0
0 0 0 0 0 0
0 0 0 0 0 0

[Km] -EA/L 0 0 EA/L 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Figure 5-1. Stiffness Matrix of a 3-D Truss Member

in Member Coordinates.

I
I
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STranslation

SRotation

KP
0 KS
o 0 KS SYMMETRY
0 0 0 KG
0 0 -KF 0 2KM
0 KF 0 0 0 2KM
-KP 0 0 0 0 0 KP
0 -KS 0 0 0 -KF 0 KS
0 0 -KS 0 KF 0 0 0 KS
0 0 0 -KG 0 0 0 0 0 KG
0 0 -KF 0 KM 0 0 0 KF 0 2KM
0 KF 0 0 0 KM 0 -KF 0 0 0 2KM

KP = EA/L; KS = 12EI/L 3 ; KF = 6EI/L2 ; KM = 2EI/L; KG = GJ/L

Figure 5-2. Stiffness Matrix of a Member in a Unit Cell in Member Coordinates.

i
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Ym

ys
YSJ Xm

Figure 5-3. A Prismatic Member in the Spatial Coordinate.

I
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or in the concise matrix from:

I Xm } - [ T] { Xs ) (5-6)

The first row of matrix [T] relates the structure axes to the Xm axis, and

can be written as:

ri = cos (Xm, Xs)

Sl = cos (Xm, Ys)

ti = cos (Xm, Zs)

Similar formulations are derived for r2, s2, t2 and r3, s3, t3.

If the displacements or forces are expressed in two different coordinate

systems, the coordinate transformation is used as the transformation

matrix between the two coordinates. For displacements, the relation is as

following:

f Dm) = [ RT] { Ds ) (5-7)

and for forces

( Fm) =1[ RT] (Fs) (5-8)

where (Dm) and (Fm) represent the properties in member axes and (Ds)

and (Fs) stand for the properties in structural axes. The transformation

matrix [RT] is orthogonal, which consists of directional cosine matrix [T]

in diagonal terms. For a truss, the transformation matrix [ RT] is

I
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_RTI 1 0T

and for a frame , the transformation matrix [ RT ] is

E TOOO
RT]= OTOO

OOTO

OOOT-

Let [Km] and [Ks] be the stiffness matrix in member axes and

structural axes, respectively. Then the forces-displacements relationships

take the following forms:

(Fm} =[Km] (Dm1 (5-9)

and

(Fs) = [Ks] Ds) (5-10)

Substituting Equ.(5-7) and Equ.(5-8) into Equ.(5-9), it yields

(Fs) = [ RT ]T [ Km] [ RT] ( Ds) (5-11)

Compare equ(5-10) and equ(5-11), we have

[ Ks ] = [ RT ]T [ Km I [ RT] (5-12)

Consider a typical space member i with two ends j and k, shown in

Figure 5-4 with axes Xs, Ys and Zs being parallel to the structural axes.

I
I
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• $ Ys,Yp
Yy

y~xM

z 
X m

Figure 5-4. Rotation of Axes of a Space Member.

1
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The Xm is taken as the longitudinal axis of the member while the Ym and

Zm directions remain to be determined. Many ways can be selected for

determining the directions of the Ym and Zm axes. A convenient way is to

take the Zm axes as being lying in the Xs-Zs plane, as shown in the Figure

5-4. Once the Xm and Zm axes are determined, the Zm axis is located

automatically by right-handed rule.

When the member axes are determined in the above described manner,

there is no confusion about their orientations except in the case of vertical

member. In this case, the position of Zm axis in the horizontal plane is not

uniquely defined. The additional restriction will be made so that the Zm

axis is always taken to be the Zs axis. Two possibilities for this case are

shown in Figure 5-5, concerning vector from initial end to final end.

The transformation from the structure axes to the member axes may be

considered to take two rotatic, steps. The first rotation is Xs and Zs axes

rotate an angle B about Ys axis. This rotation moves the Xs axis to the

position denoted as Xa and moves the Zs axis to the final position denoted as

ZB (same as Zm). The transformation formula is written as follows:

{ X } = [ T] { Xs 1 (5-13)

where

cosB] 0 sin31
[To] = 0 1 0

L-sin.3 0 cosB]
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Ys,Xm

k

7= 90.

/Zs,Z 
mL

7 = 270* xs /

kZs,Z M

Xm

Figure 5-5. Two Possibilities of the Vertical Member.
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For the second rotation, Xa and YB rotate an angle y about ZP axis. This

rotation moves the XB and Y8 axes to the final positions Xm and Ym. The

transformation is expressed as:

{Xm } = [ (T] { Xif} (5-14)

where

cosy siny 0 1
[Ty] =[-siny cosy 0

0 001]

Substituting Equ.(5-13) into Equ.(5-14) yields

{_Xm) = [Ty][TB]{Xs} (5-15)

Comparing above equation with Equ(5-6), we have the rotation matrix

[T] = [Ty ][To] (5-16)

Let ( Xj, Yj, Zj ) and ( Xk , Yk, Zk ) be the coordinates of initial end and

terminal end of the member, respectively. Then the directional cosines that

relate this structure axes to Xm axis is obvious as follows:

Xk-Xj
rl=r= L

Yk-Yj
s' L
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Zk-Zj
L

where L is the length of member, can be obtained from the coordinates of

two ends. Let q be equal to (r2+t 2)1/2, and the rotation matrix in equation (5-

13) and (5-14) can be expressed as follows:

[r t]

[TB] 0

t r

and

q sO 0
[Ty] -s q 0

L 011

Thus, the rotation matrix for transformation between the member axes and

the structure axes takes the following form:

- q °
T-y ][ T3 ]= q- q  (5-17)

The above rotation matrix [T] is valid for all positions of the member except

when the member is vertical. In the case of a vertical member, the

directional cosines of the member axes with respect to the structure axes

can be determined by inspection. Thus the rotation matrix is seen to be

I



148

[Tvert] -s 0 0 (5-18)

Taking the appropriate rotation matrix ,either Equ(5-17) or Equ(5-18), to

acquire the desired rotation transformation matrix [RT], the member

stiffness matrix in the structure axes is obtained. Then, assembly of the

contributions from each member to a joint, or, a node in finite element

procedure, yields the stiffness matrix of a unit cell as expressed in equ(5-5).

With the stiffness matrix of a unit cell being known, for a structural shape

which consists of a large number of unit cells, a system of equations for the

total structural shape can be assembled using the individual cell relations

following the finite element methodology. From the solution of the

equations, the stress distribution and deformation of the entire structure

under applied load can be calculated and analyzed.

NUMERICAL SIMULATIONS

The FCM was implemented by the use of computer simulation. With basic

parameters in a unit cell, such as yarn elastic modulus, fiber volume

fraction, yarn orientation and unit cell dimension fully characterized, the

applicability of the FCM to predict the structural response of composites

will be demonstrated experimentally.

Finite Element Implementation of FCM
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The Finite Cell Model just described has been implemented into finite

element program. The basic ideas of the Finite Cell Model are laid out as a

flow chart as shown in Figure 5-6. Figure 5-7 shows the more detailed

computational flow of forming stiffness matrix of a unit cell. By entering

the basic parameters for a unit cell and fiber/matrix properties to the

program, the load-deformation and elastic properties such as elastic

modulus and Poisson's ratio of the composite can be determined.

In addition, the results of structural analysis from separate studies show

that the truss unit cell is not a stable structure. Therefore, the frame model

is carried out in this numerical analysis.

The high symmetry composite material was proposed for structures with

high compression capability. The primary idea is to put high modulus

spheres into fiber reinforced materials. The fiber architecture discussed in

this report will be a X-Y-Z type of structure. The spheres are in contact

with each other and are confined by reinforced fibers. Ceramic material

will be used as matrix for high temperature environment. The unit cell of

the high symmetry composite is illustrated in Figure 5-8. From the

arrangement of fibers and spheres in this figure, the unit cell dimension

can be determined as the diameter of each individual sphere.

I
I
I
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Start

Input Geometric Parameters
,Boundary Conditions and

Material Properties

Call Subroutine .41

Form [k] of a Unit Cell

Assemble Global [ K] of the Structure

Call Subroutine j-4

Solve for Displacements
of All Joints ( Nodes)

l C Stop

I Figure 5-6. The Flowchart of FCM Finite Element Program.

I
I
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Subroutine FO©RN

Get The End Coordinates
and Material Properties

of All Members

Calculate Directional Cosines
r, s, t and Form Transformation

Matrix [RT] of a member

Form The Stiffness Matrix [Km] of the
Member in Member Coordinates

Obtain Stiffness Matrix [Ks]
of the Member in

Structural Coordinates

[Ks] = [RT]T [Km] [RT]

Store [Ks] into [K]

Return

Figure 5-7. The Flowchart of Stiffness Matrix Formulation

I
I
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In order to apply the finite cell modelling to the unit cell of high symmetry

composites, the representation of the three constituents of the composites,

i.e., matrix, fiber and spheres, need to be discussed. Consider a composite

with the volume fraction of matrix, fibers and spheres being Vm, Vf and

Vs , respectively. The unit cell dimension is HxWxT. Since the dimensions

of a unit cell are considered to be the center lines of members of the unit

cell, part of each bar lies outside the unit cell in real case. An averaging

method for the determination of the cross-section areas of the bars was

used. Assuming that each type of bars have the same cross-sectional area.

To simplify the analysis, assume that the yarns travelling in each direction

can be combined into four yarns in that direction. The four yarns are

assumed to travel along four corners in that direction. In this sense, the

cross-sectional area of the fiber-bars is obtained by the following formula:

Af = VfHWT / 4(H+W+T)

For the representation of the sphere in a unit cell, the effective sphere-bar

with certain cross-section area will be assumed. The modulus of the

sphere-bar is the same as the modulus of the sphere. The cross-sectional

area of the sphere-bar is assumed to take the following form:

As = VsHWT / 4(H+W+T)

As for the matrix, which is used to transfer load, it can be represented as

bars along the three orthogonal axes. The cross-sectional area of the

matrix-bars is calculated by use of the following formula:

I
I
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Am = VmHWT / 4(H+W+T)

In the present case, the unit cell can be treated as a cube. Hence,

H=W=T

or, the length of each bar is the same in present study. The cross-sectional

area of fiber-bars, sphere-bars and matrix-bars can be rewritten as the

following form:

Ai = ViH 3 /12H = ViH 2 /12

where i could be a fiber-bar, sphere-bar or matrix-bar.

From the above discussions, the cross-sectional area and length of each

bar, including the matrix-bar, fiber-bar and sphere-bar, are formulated.

The matrix-bar, fiber-bar and sphere-bar are modelled to travel along each

edge of a cubic unit cell. For the analysis purpose, the three bars need to be

combined into a composite bar with individual contribution of the three

bars. The resultant properties of the composite bar is obtained rule of

mixture among the three bars. For the cross-sectional area of the

composite bar, Ac, it should be the sum of the cross-sectional areas of the

three bars, or,

Ac = Af+Am+As

For the modulus of the composite bar, Ec, it can be obtained in the following

formula:

I
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AcEc = EfAf+EmAm+EsAs

and the shear modulus of the composite bar is

1/Gc = Vf/Gf + Vm/Gm + Vs/G s

For a sphere in a X-Y-Z architectured unit cell, the volume of the sphere is

obtained by the following formula:

Ds = (4/3)n(H/2)
3

Thus, regardless of the dimension of the unit cell, the volume fraction of the

sphere in a unit cell is:

Vs = Ds/H 3 = r76 =52.3%

Therefore, if the fiber volume fraction is 20%, the volume fraction of matrix

is 27.7%.

The spheres used for reinforcing the high symmetry composites are made

of alumina with modulus being 56 Msi(386 GPa). The fibers selected for

this study are Nicalon and FP-5 fibers, while the matrices are SiC, alumina

and LAS-III. The modulus of the materials are listed in the following

table:
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FIBER MATRIX

FP-5 Nicalon SiC LAS-III Alumina

23.3 Msi 28.5 Msi 12.3 Msi 56 Msi 42 Msi

(161 GPa) (197 GPa) (84.8 GPa) (386 GPa) (290 GPa)

In a unit cell with dimension of .2"x.2"x.2", the cross-sectional areas of the

fiber, matrix, sphere and composite bars are listed in the following table:

Vf Fiber Matrix Sphere Composite

(%) (in 2) (in 2) (in 2 ) (in 2 )

20 .000667 .000923 .001743 .003333

By inputting the above moduli, cross-sectional areas and unit cell

dimension to the Finite Cell program, the response of the unit cell structure

under compression can be found. Figure 5-9 shows the loading condition

and boundary conditions of a specimen. The applied load was divided into

several steps on account of the possible nonlinear load-deformation

behavior due to geometrical conformation. In order to examine the effect of

matrix reinforced with alumina spheres, the predictions of the composites

without spheres are performed as well. The comparison of the stress-

strain curves between various combinations of fibers, matrices and spheres

are shown in Figure 5-10 to 5-13. From the figures, the high symmetry

composites with sphere reinforcements have higher Young's modulus.

'I
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Figure 5-10. Compressive Stress-Strain Relationship of FP/SiC

Composites with/without Sphere Reinforcement.
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Figure 5-11. Compressive Stress-Strain Relationship of FP/LAS

Composites with/without Sphere Reinforcement.
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Figure 5-12. Compressive Stress-Strain Relationship of Nic/SiC

Composites with/without Sphere Reinforcement.
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Figure 5-13. Compressive Stress-Strain Relationship of Nic/LAS

Composites with/without Sphere Reinforcement.
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I Figure 5-14. Compressive Stress-Strain Relationship of FP/Alu

I Composites with/without Sphere Reinforcement.
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Figure 5-15. Compressive Stress-Strain Relationship of Nic/Alu

Composites with/without Sphere Reinforcement.
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To summarize from Figure 5-10 through Figure 5-15, the stiffness of the

LAS- and Alumina-matrix composites with sphere reinforcement showed a

higher value than the LAS and Alumina -matrix composites without

sphere reinforcement. However, in the case of the SiC-matrix composites,

no significant improvement of stiffness was shown. The reason is that the

modulus of embedded sphere is the same as that of the matrix SiC.

Therefore, the reinforcing effect is not seen. Hence, the addition of high

modulus spheres into softer matrix composites shows improved modulus.

The other method to account for the effect of spheres in the matrix is to treat

the matrix as particulate-filled system. Thus, the effective properties of the

matrix can be described by Kerner's equation, which takes the following

form for ;shear modulus:

VsGs Vm

Gme = G (7- 5vm)Gm + (8 - 10 Vn Gs 15 (1 -V)

VsGm Vm

(7- 5v m )Gm + (8 - 10 Vn Gs 15 (1 -V m )

where V represents volume fraction, and subscripts m and s represent

matrix and sphere phases, respectively. Conversion of shear to tensile

modulus may be made by using the isotropic relation

Eme = 2 Gme(l+V)

I
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where the Poisson's ratio, v, is given by a rule-of-mixture expression

v = VmV m + VsV s

With this consideration, the cross-sectional area of the fiber-bars is

calculated by the previous formula:

Af = VfHWT / 4(H+W+T)

As for the sphere-filled matrix, the cross-sectional area of the effective

matrix-bars is calculated by use of the following formula:

Ame = (Vm +Vs)HWT / 4(H+W+T)

The resultant properties of the composite bar is obtained by rule of mixture

among the two bars. For the cross-sectional area of the composite bar, Ac ,

it should be the sum of the cross-sectional areas of the three bars, or,

Ac = Af+ Ame

For the modulus of the composite bar, Ec, it can be obtained in the following

formula:

AcEc = EfAf+ EmeAme

and the shear modulus of the composite bar is

I
1/Gc = Vf/Gf + (Vs+Vm)/Gme

I
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By inputting the effective moduli, cross-sectional areas and unit cell

dimension to the Finite Cell program, the response of the unit cell structure

under compression can be found.

Figure 5-16 and Figure 5-17 show the effect of sphere volume fraction and

fiber volume fraction, respectively.

100

~60
:S-01

40

C, 0

0.0 0.5 1.0 1.5 2.0

Strain, %

Figure 5-16. The effect of sphere volume fraction on Compressive

Stress-Strain Relationship of Nic/LAS Composites.
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0.0 0.5 1.0 1.5 2.0

Strain, %

Figure 5-17. The effect of sphere volume fraction on Compressive

Stress-Strain Relationship of Nic/LAS Composites.

In Finite Cell Modelling, the basic assumption on material-bar

representations simplifies the analysis of high symmetry composites. The

treatment of composite bar by use of the rule-of-mixture stems from the

complexity of the interaction between fiber, sphere and matrix. The actual

composite behavior around sphere surface and sphere-fiber contact points

is very complicated. In addition to compressive stress, the shear stress,

which transfers the load from sphere and fiber to matrix, takes place. The

neglect of the shear stress may result in an inaccurate prediction of elastic

behavior. But, C-L'e degree of inaccuracy is not under consideration in Finite

Cell Modelling. The predictions should be evaluated by experimental

results. Further studies on this model to investigate the interaction

between fiber and matrix have to be conducted. The load transfer

mechanism between fibers, spheres and matrix as well as the effect of fiber

architecture in a unit cell needs to be explored. This may lead to a 3-D solid

element modelling on the unit cell of a high symmetry composite.

I
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A 3-D finite element code for analyzing the deformation of hollow spheres

was developed and is discussed in the following section. This program can

be integrated with finite cell modelling to further investigate the the effect of

fiber/sphere interaction.
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CHAPTER SIX

FABRICATION OF HIGH SYMMETRY COMPOSITES

In order to implement the concept of high symmetry structures, a method

for the creation of a 3-D fiber network and the placement of the sphere was

developed.

The hexagonal braiding machine (HBM) consists of the following

components:

* motion motor array (MMA)

* locating system (LS)

* sphere feeding mechanism (SFM)

* hexagonal drivers (HD)

* sphere tank (ST)

* carriers (C)

* take down mechanism (TDM)

As illustrated in Figure 6-1, the MMA consists of step motors and control

units connected directly to a computer which offers precise control ofI
I
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independent motion for each yarn carrier. Figure 6-1a is a schematic

illustration of the hexagonal braiding machine (HBM). The motion motor

array (MMA) is the principal driver which propels the carriers in a

hexagonal pattern to create various fibrous networks that can range from

orthogonal to the close-to-cubic 3-D quadraxial structure. The locating

system along with sphere feeding mechanism meter the spheres into the

fibrous network after each braiding operation. These operations are

followed by a take-down motion which collects the 3-D fiber/sphere assembly

into a storage package for composite fabrication.

To facilitate the fabrication process and assure reproducibility and

numerical control system is organized and implemented through a

computer. The control logic and data flow are shown in Figure 6-2. The

resulting structures which can be created by the HBM are illustrated in

Figure 6-3. In Figure 6-4 a model of the high symmetry system is shown.

I
I
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Figure 6-4 A Model of High Symmetry System.
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CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

In the interest of developing toughened and hardened composite systems,

the concept of structural symmetry by the placement of spheres in a 3-D

fiber network was examined. By employing a 3-D fiber architecture, the

composite system is anticipated to be toughened by the 3-D fiber network

through complex interaction of toughening mechanism. The spheres,

when strategically placed in a prearranged fiber network, will contribute to

the hardening of the composite.

To demonstrate this concept of High Symmetry Composite (HSC), a

systematic study was carried out and organized into three parts:

Part I. Classification of 3-D Fiber Architecture

Part II. Modelling of High Symmetry Systems

Part III. Demonstration of Concept

I
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In Part I of this study, 3-D fiber architectures were classified according to

the method of manufacture, symmetry and geometric isotopy. It was

concluded that a classification scheme based on geometric isotopy provides

the most efficient and useful method for the modelling of the 3-D composite

system.

The modelling effort in Part II of the study consists of the development of a

finite element code for the sphere; a finite cell model (FCM) for the 3-D fiber

network. The sphere routine is capable of handling elastic and

elastoplastic materials for laminated shell of isotropic and/or orthotropic

layers under radial and tangential surface forces, as well as internal

pressure loading. The finite cell code, on the other hand, was developed

based on the idealization of the unit cell geometry in terms of truss systems.

According to the principle of virtual work, the nodal forces within the cell

structure are related to the nodal displacement by a stiffness matrix [K].

This finite cell code has been employed to predict the tensile stress-strain

relationship of chemical vapor infiltrated (CVI) 3-D braided Nicalon

SiC/SiC composites. With a volume fraction of 0.4 and using a 1 x 1

braiding pattern for the Nicalon yarn, the theoretical prediction of the

tensile stress-strain relationship agrees reasonably well with the

experimental results as shown in Figure 7-1.

I
I
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Using the FCM, parametric studies were carried out for various ceramic

matrix composite systems. As expected, the inclusion of the sphere

reinforcement does improve the compressive stiffness.

In order to transform the high symmetry composite concept to reality, there

is a need for a mechanism to create the structure. Part III of this study is

dedicated to this effort. Unfortunately, due to the shortage of funding for

the third year, only the manufacturing methodology was explored. The

proposed method is based on a hexagonal braiding process which

incorporates a sphere feeding mechanism. This manufacturing system

was designed with full support of computer logic flow. Accordingly, when

the prototype machine is built, a numerically controlled, reproducible

preforming system will be available for the manufacturing of high

symmetry composites.

Finally, it must be concluded that although the concept of high symmetry

composites has been theoretically and conceptually demonstrated which

simulated results and preforming mechanism. a considerable amount of

work remains to be done in the verification of the model and design

concepts. It is recommended polymer and ceramic matrix composites with

3-D fiber/sphere reinforcements to be fabricated, first manually and then on

the hexagonal braiding machine (when it is available). Tensile and

compressive tests will be performed on these composites. The failure

modes will be characterized by fractography. It is further recommended

I
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that further work be carried out to link the sphere code to the finite cell code

such that the interaction of the 3-D fiber network with the sphere be fully

explored.

I
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APPENDIX A

LISTING OF FINITE CELL MODELLING PROGRAM
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C --- THIS PROGRAM IS DESIGNED TO DEMONSTRATE THE CONCEPT AND FORMULATIONS
C --- OF FINITE-CELL MODELLING for X-Y-Z fiber reinforced composites.
c --- The maximun number of unit cells of this program is 5.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /ARR/ DISP (72) ,FORCE (72) ,FORCE1 (72) ,DISPI (72)
COMMON /ARR1/ FORCE2 (72) ,CORD (72) ,COOR(72)
CHARACTER*20 INFILE, OUTFIL
COMMON /PARAM/ E(4),G(4),A(4),DIA(4),FR,EA(4),EAL(4)
COMMON /REDUCT/ IRN,IRDOF,IR2,IRR2,IRI, IRS, IK6, IRR6
COMMON /NUMBER/ NCELL, NOD,NDOF,NBC,NFORCE,NSTEP, ITER
COMMON /INDEX/ IND(72),IBC(72),KL(72),IREDUCE(72),IDELE(6,8)
COMMON /STIF!/ STIFF(72,72)
COMMON /STIF/ STIFFI(48,48),COR(24,3)
COMMON /MCONN/ MCN(6,16,2)
COMMON /MATRIX/ B(72,72)
COMMON /VALUE/ RATIO1,RATIO2,RATIO,TDIS
CHARACTER*1 ANS

-- OPEN INPUT DATA FILE

OPEN (IJIT=I0,FILE=' INFILE' ,STATUS='OLD')

-- READ THE NUMBER OF UNIT CELLS

READ(i0,*) NCELL

READ THE COORDINATES OF EACH NODE

READ (!0, *) NOD
NDOF=6 NOD
2O 20 :=I,NOD
READ(10,2001) COR(I,1),COR(I,2),COR(I,3)

II CONTINUE

STORE THE CELL CONNECTION

2O 25 I=I,NCELL
5 READ(10,*) (IDELE(I,J), J=l,8)

-- STORE THE UNIT CELL MEMBER CONNECTION

DO 27 I = 1,NCELL
READ(l0,*) (MCN(I,J,l),J=l,12)
READ(I0,*) (MCN(I,J,2),J=l,12)

27 CONTINUE

ENTRY OF BOUNDARY CONDITIONS FOR DISPLACEMENTS

DO 30 I=1,NDOF
32 IND(I)=1

PZAD (10,* ) NBC

IND = 0 (FIXED SUPPORT), IND = 1 (FREE SUPPORT)

DO 35 I=1,NBC
READ (10, *) IBC (I)
IBC1=6* (IBC (I)) -5
IBC2=6* (IBC(I)) -4
IBC3=6* (IBC(I)) -3
IBC4=6* (IBC (I) )-2
IBC5=6* (IBC(1) )-1

IBC6=6* (IBC (I))
I 5 READ(10,*) IND(IBCI),IND(IBC2),IND(IBC3),IND(IBC4),IND(IBC5),

kt-



& IND(IBC6)

-- ENTRY OF BOUNDARY CONDITIONS FOR FORCES

DO 40 I=1,NDOF
FORCE (I) =0. 0
FORCE1 (1) =0. 0
DISP (I) =0.0
DISP1(I)=0.0

40 CONTINUE
READ(10,*) NFORCE
DO 43 I=1,NFORCE
RF.AD(10,*) IFORC
IFORC1=6*IFORC-~5
IFORC2=6*IFORC-4
IFORC3=6*IFORC-3
IFORC4=6*IFORC-2
IFORC5=6*IFORC-1
IFORC6=6*IFORC
READ(10,*) FORCE(IFORCI) ,FORCE(IFORC2) ,FORCE(IFORC3),

&FORCE (IFORC4) ,FORCE(IFORC5) ,FORCE (IFORCE)
43 CONTINUE

-- MATERIAL PROPERITIES

READ(10,2001) VF,VFB,VM
READ(10,2002) EF,PF,E.M,PM,EBALL
-READ (10,2001) HEIGHT,WIDTH,THICK
READ(10,*) NX,NY,NZ
FT=HEIGHT
vW4L=WIDTH
:.L=THICK
ABALL=VFB*HL*WL*TL/ (4. *(HL+WL+TL))

AM=V*HL*WL*TL/ (4** (HL+WL+TL))

-. AF + AM + ABALL
print ~,af,axn,aball,ac
:E:BALLX =(EBALL/ABALL)*HL

ebalix =eball

EBALLY =EBALLX

EBALLZ =EBALLX

GF = EF/(2.+2.*PF)
GM = EM/(2.+2.*PM)
GB = EBALL/(2.+2.*.3)
A(l) = AC
A(2) = AC
A(3) = AC
acl=af/ac
ac2=am/ac
ac3=aball/ac
print *, acl,ac2,ac3
2 (1) = (A*EF+AM*E+EBAL *ABALL) /A (1)
E (2) =(AF*EF+AM*EM+EBAfLLY*ABALL) /A(2)
E (3)=(AF*EF+M*E+EBLY*ABML) A(3)
if(vfb.eq.0.) then

GC = l./(PF/GF+PM/GM+.3/GB)
endiif
gc = 1./(pf/gf+pm/gm)
G(l) = GC
G(2) = GC
G(3) = G
DIA(1)=DSQRT(4.*A() )/3.14159)
DIA(2)=DSQRT(4.*A(2) /3.14159)

DIA(3)=DSQRT(4.*A(3) /3.14159)



EA(1)=E (1) A(l)
EA (2) =E (2) *A (2)
EA (3) =E (3) *A (3)
EAL (1) =EA (1) / HL
EAL (2) =E-A (2) /WL
E-AL(3)=.A(3) /TL

2001 FORMAT(3F10.O)
2002 FORMAT(5F10.0)

CLOSE CUNIT=1O)
C

00 55 I=1,NDOF
55 COOR(I)=0.

DO 60 I 1,NOD
Il = 6*1-5
12 = 6*I-4
13 = 6*1-3
COOR(Il) =COR(I,l)
COOR(I2) = COR(I,2)
COOR(I3) = COR(I,3)

60 CONTINUE

PRINT *I HOW MANY STEPS ?
READ(5,*) NSTEP

PRINT *I ENTER LOAD INCREMENT
READ(5,*) DLOAD

PRINT ,' ENTER THE RATIO OF FRAME JOINT
READ(5,*) FR

PRINT *1 ENTER ULTIMATE STRENGTH (KSI)
READ(5,*) UTS

C
c-- INCREMENTAL LOAD LOOP STARTS HERE

OPEN (UNIT=50,FILE-'OUTFIL' ,STATUS='JNKNOWN')
WRITE(50,*) ' NSTEP ', DLOAD ', FR tlUTS'

WRITE (50, 1007) NSTEP,DLOAD,FR,UTS
WRITE (50, *)
WRITE (50, *)
WRITE(50,*) I EX ','EY I'I EZ ', 'EB I
WRITE(50,1008) E
WRITE (50, *)
WRITE(50,*) I AX ','AY ','AZ 'AB
WRITE(50,1008) A
WRITE (50, *)
WRITE(50,*) I DX ','DY ', 'DZ t,'DB I
WRITE(50,1008) DIA
WRITE (50, *)
WRITE (50, *) I PX
WRITE(50,1008) PX
WRITE(50, *)
WRITE(50,*) I HL ',W#,'TLI
WRITE (50, 1008) HEIGHT,WIDTH, THICK

WRITE (50, *)
WRITE(50D*) I EAXI N','EA ','AZZ 'A
WRITE(50,100) NXNA N
WRITE (50, *)
WRITE(50,*) I EKAXL f,'EAYL ','EAZ/ ', 'EAB/L

WRITE(50,1008) EAL1RT(0*



WRITE(50,*)
WRITE (50, *)
WRITE(50,*) 'DATA OF 3-NODE
WRITE (50, *)
WRITE(50,*) ' FORCE ',' STRESS ', STRAIN
&Exx ',' Vxy

C
DO 1000 ILOOP=1,NSTEP
RATIO1=4. *ILOOP*DLOAD/(WIDTH*THICK)
RATIO=DLOAD* (ILOOP)

C
C --- ITERATION OF ONE STEP LOAD STARTS HERE
C

DO 999 ITER=1,10

C FORM STIFFNESS MATRIX

DO 99 I=1,NDOF

DO 99 J=1,NDOF
99 STIFF (I, J) =0.

DO 98 I=1,48
DO 98 J=1,48

93 STIFF1(I,J)=0.
DO 100 KK=I,NCELL

OPERATION ON LOCAL ELEMENT

DO 110 L=1,8
LI=IDELE (KK, L)

LI=6*L-5
L2=6*L-4
L3=6*L-3
L4=6*L-2
L5=6*L-1
L6=6*L
KL (LI)=6"LI-5

KL (L2) =6*LI-4
KL (L3) =6*LI-3
KL (L4) =6*LI-2
KL (L5) =6*LI-I
KL (L6) =6*LI

'10 CONTINUE

CALL FORM (48, KK)

STORE LOCAL (K] TO GLOBAL [K]

DO 120 I=1,48
DO 120 J=1,48
IX=KL (I)
IY=KL (J)
STIFF (IX, IY) =STIFF (IX, IY) +STIFF1 (I, J)

120 CONTINUE
100 CONTINUE

IF(ITER.EQ.1) THEN
GOTO 170
ENDIF

C ---- CALCULATE BIASED LOAD FOR ITERATION1:



C
DO 150 I=l,NDOF
FORCE2 (I)=0.
DO 150 J=1,NDOF
FORCE2 (I) =STIFF (I, J) *DISP1 (J) +FORCE2 (I)

150 CONTINUE

RATIO2=RATIO-FORCE2 (1)
IF(RATIO2.LT.0.001) THEN
GOTO 400
END IF

C
C -- APPLj BOUNDARY CONDITIONS TO REFDUCF THE SIZE OF GLOBAL [K]

c
170 J=0

DO 200 I=1,NDOF
IF (IND (1) .EQ. 0) THEN
J= 11+ 1
IREDUCE (J) =I
END IF

200 CONTINUE
IPN=J

C -- COLUN REDUCTION

IR2=1
DO 210 IR1=1,NDOF
IF(IR2.GT.IRN) THEN
GOTO 215
END IF
IF(IR1.EQ. IREDUCE(IR2)) THEN
IR2'=IR2+ 1
GOTO 210
ENDIF

215 IRR2=IR1-IR2+1
FORCEl (IPP2) =FORCE (IRi)
DO 216 IR3=1,NDOF

216 STIFF(IRR2,IR3)=STlFF(IR1,IR3)
210 CONTINUE

IRDOF=IRR2

-- ROW REDUCTION
C

IR6=1
DO 250 IR5=1,NDOF
IF(IR6.GT.IRN) THEN
GOTO 255
END IF
IF(IR5.EQ. IREDUCE(IR6)) THEN
IR6=IR6+ 1
GOTO 250
END IF

255 IRR6=IR5-IR6+1
DO 256 IR7=1,IRDOF

256 STIFF (IR7, IRR6) =STIFF (IR7, IRS)
250 CONTINUE

C
'IC -- CALCULATE INVERSE OF REDUCED [K]

DO 260 I=1,IRDOF
- DO 260 J=1,IRDOFj260 B (I,J) =STIFF (I,.J)

CALL INV(IRDOF)



275 DO 300 I=1,IRDOF
DISP (I)=0.
DO 300 J=1,IRDOF

300 DISP(I)=B(I,J)*FORCE1(J7)*RATIO+DISP(I)

c --- RESTORE THE DISPLACEMENTS

IR8=1
DO 350 I=1,NDOF
IF(IREDUCE(1R8) .EQ.I) THEN
IR8=IR8+1
GOTO 350
END IF
IR9=I-IR8+1
DISP. I) =DISP (1R9)

350 CONTINUE

-- CALCULATE THE DISPLACED COORDINATES

DO 380 I=1,NDOF
'3~0 CORD(I)=COOR(I)+DISP1(I)

DO 390 1 =1,NOD
Il = 6*1-5
12 = 6*1-4
13 = 6*1-3
COR(I,1) = CORI) (11)
COR(I,2) = CORD (I2)
COR(I,3) =CORD (I3)

390 CONTINUE
99CONTINUE

PRINT OUT THE RESULTS

420 TDIS=CORD(13)-COOR(13)
YDIS=CORD (14) -COOR(14)
ZDIS=CORD (15) -COOR(15)
STPAIN=TDIS/ HEIGHT
SY = YDIS/WIDTH
SZ = ZDIS/THICK
Exx = RATIOI/STRAIN
Vxy = -SY/STRAIN
Vxz = -SZ/STRAIN
WRITE(50,1006) RATIO,RATIO1,STRAIN,EXX,Vxy

r---THE END OF THE LOOP

UTS1 = 1000.*UTS
IF(RATIOl.GT.UTS1) THEN
GOTO 500
END IF

1000 CONTINUE
500 WRITE(50,*)

WRITE (50, *)
WRITE(50,*) 'FINAL DISPLACEMENT OF ALL NODES
WRITE (50, *)
WRITE(50,*) ' X ', Y''Z
&NO. '
DO 501 I=1,NOD
J1=6 * -5
J2=6* 1-4jJ3=6*1-3

501 WRITE(50,1009) DISP1(J1),DISP1(J2),DISP1(J3),I



WRITE (50, *)
WRITE(50,*) 'FINAL ROTATION
DO 505 I=l,NOD
Jl=6 * -2
J2=6*I-1
J3=6*
WRITE (!0, *)

505 WRITE(50,1009) DISP1(Jl),DISP1(J2),DISP1(J3),I
CLOSE (UNIT=50)

C
1001 FOPMP.T(/'REDUCED (K] '' ILOOP = 1,13,' ITER = ',13)
1002 FORMAT(/2E16.6)
1003 FORMAT(/INVERSE (K] ' ILOOP = 1,13,1 ITER = ',13)
1004 FORMAT(/12E10.3)
1005 FORMAT(/4E16.7)
1006 FORMAT(/5E14.5)
:007 FORMAT(/I10,3F12.2)
1008 FORMAT(4E12.4)
1009 FORMAT(3EI4.5,I6)
1010 FORMAT(2X,3I5)

511 STOP
END

cccccccc -----------------------------
C

-- THIS SUBROUTINE IS TO FORM THE CELL STIFFNESS MATRIX

SUBROUTINE FORM (IQAZ, KK)

IMPLICIT DOUBLE PRECISION CA-H,O-Z)
COMMON /STIF/ STIFFi (48, 48) ,COR(24, 3)
COMMON /MCONN/ MCN(6,16,2)
COMMON /PARAM/ E(4),G(4),A(4),DIA(4),FR
DIMENSION St-(12,12),SR(12,12),SK(12,12),GK(48, 8)
DIMENSION RM(3, 3),RTM(12, 12)
INTEGER IQAZ

DO 100 I = 1,IQAZ
DO 100 J = 1,IQAZ

100 STIFF(I,J)=0.0

c- FORM THE COORDINATE TRANSFER MATRIX [Ri

DO 600 M = 1,12
I I = MCN (KK, M, 1)
JJ = MCN(KK,M,2)
X = COR(JJ,l)-COR(II,l)
Y = COR(JJ,2)-COR(II,2)
Z = CORJW, 3) -COR (I1, 3)
SL =DSQRT(X*X+Y*Y+Z*Z)
R = X/SL
S = Y/SL
T = Z/SL

RT = DSQRT(R*R+T*T)

601 FORMAT(/8El5.5)

IC --- [R] FOR MEBERS THAT ARE IN THE DIRECTION OF Y-AXIS

IF(RT.LT.0.001) THEN
PM (1, 1) =0.
RM(1, 2) =S
RM (1, 3) =0
RM(2, li=-S



RM (2, 2) =0.
RM(2, 3) =0.
RM (3, 1) =0.
RM(3, 2) =0.
RM (3, 3) =1.

ELSE
C
C --- [R] FOR OTHER MEMBERS
C

RM(1, 1) =R
RM(1, 2)=S
RM(l, 3)=T
RM (2, 1) =-R*S/RT
RM(2,2) =RT
RM (2, 3) =-S*T/RT
RM (3, 1) =-T/RT
RM (3, 2) =0.
RM(3, 3) =R/RT

ENDIF
DO 102 I=1,12
DO 102 J=1,12

.-102 RTM(I,J)=0.
DO 105 I=1,3
DO 105 J=1,3
RTM(I, J)=RM(I, J)
RTM (I+3, J+3) =RM (I, J)
RTM (I+6, J+6) =RM (I, J)
RTM(I+9,J+9) =RM(I,J)

105 CONTINUE

C GET MATERIAL PROPERTIES FOR EACH MEMBER
C

IF(M-4) 110,110,115
1i0 N = 1

GO TO 150
115 IF(M-8) 120,120,125
120 N = 2

GO TO 150
125 IF(M-12) 130,130,130
130 N = 3

150 H = 3.14159*DIA(N)**4./64.
Q = E (N) *A (N)/SL
F = (12.*E(N)*H/SL**3.)*FR
B = (6.*E(N)*H/SL**2.)*FR
C = (2.*E(N)*H/SL)*FR
D = (2.*G(N)*H/SL)*FR

C FORM MEMBER STIFFNESS MATRIX (SM]
C

155 DO 160 I = 1,12
DO 160 J = 1,12

160 SM(I,J) = 0.
SM(I,i) = Q
SM (1, 7) -Q
SM(2,2) = F
SM(2,6) = B
SM(2,8) = -F

SM(2,12) = B
SM(3,3) = F
SM(3,5) = -B
SM(3,9) = -F
SM(3,11) = -B
SM(4,4) = DI



SM(4,10) = -D
SM(5,5) = 2*

SM(5,9) = B
SM(5,ll) = C
SM(E,6) = 2.*C
SM(6,8) = -B
SM(6,12) = C
SM(7,7) = Q
SM(8,8) = F
SM(8,12) = -B
SM(9,9) = F
SM(9,11) = B
SM(1O,10)= D
SM(11,11)= 2.*C
SM(12,12)= 2.*C

C --- APPLIED SYMERTIC CONDITION

DO 170 I = 1,11
DO 170 J = 1+1,12

170 SM(J,I) = SM(I,J)

C -- FORM [SM] [RI

DO15I=11
DO 175 1 = 1,12

SR(I,J) = C.
DO 175 K = 1,12

75SR(I,J) = SR(I,J)+SM(I,K)*RTM(K,J)

FORM ERT] [SM] [RJ

DO 185 I = 1,12
DO 185 J = 1,12
SK(I,J) = 0.
DO 185 K = 1,12

185 ,K(I,J) = SK(I,J)+RTM(K,I)*SR(K,J)

-- STORE MEMBER STIFFNESS [SKI IN TO UNIT CELL STIFFNESS MATRIX

DO 195 I = 1,48
DO 195 J = 1,48

195 GK(IJ) = 0.
II=MCN(1,M, 1)
JJ=MCN (1, M, 2)
DO 200 12 = 1,12
IF(I2.LT.7) THEN

13 = (11-1)*6+12
ELSE

13 = (JJ-1)*6+I2-6
END IF
DO 200 J2 = 1,12
IF(J2.LT.7) THEN

J3 = (II-1)*6+J2I ELSE
J3 = (JJ-1)*64.J2-6

END IF
20GK(13,j3) =SK(12,J2)

20CONTINUE
DO 210 I1 1,48
DO 210 J =1,48

210 STIFF1(I,J) =STIFF1(IJ)+GK(I,J)

600 CONTINUE
RETURN



END
C
C
C SUBROUTINE FOR MATRIX INVERSION
C
C

SUBROUTINE INV(N)
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON /MATRIX/ B(72,72)
DIMENSION A(72,144)

C
EPS=1.E-18
DO 100 I=1,N
DO 100 J=I,N

100 A (I, J)=B (I, J)
L=N+I
M4=2*N
DO 200 I=1,N
DO 200 J=L,M
A (I, J) =0.
IF(I+N-J) 200,210,200

210 A(I,J)=I.
200 CONTINUE

DO 300 I=1,N
K=I
IF(I-N) 10,40,10

10 IF(A(I,I)-EPS) 20,30,40
20 IF(-A(I,I)-EPS) 30,30,40
30 K=K+I

DO 35 J=1,M
35 A(I,J)=A(I,J)+A(K,J)

GO TO 10
40 DIV=A(I,I)

DO 50 J=1,M
50 A(I, J)=A(I, J)/DIV

DO 300 K=1,N
DELT=A (K, I)
IF (DABS(DELT)-EPS) 300,300, 60

60 IF(K-I) 70,300,70
70 DO 80 J=1,M
80 A(K,J)=A(K,J)-A(I,J) *DELT

300 CONTINUE
DO 400 I=I,N
DO 400 J-L,M
K=J-N
B(I,K)=A(I,J)

400 CONTINUE
RETURN
END

I
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A FINITE ELEMENT CODE FOR HOLLOW SPHERES
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FINITE ELEMENT CME FOR HOLLOW SPHERES

INTRODUCTION

The hollow sphere is a major component in the high symmetry ceramic

matrix composite which is studied in this research. Fig. 1 illustrates the

conceptual unit cell of the composite in which closely packed spheres are

embedded in the 3-D fiber network. To desc.ibe the load-deformation

response of the total unit cell and the internal stresses in the constituent

components of the unit cell, the response of the individual spheres must be

described first and then incorporated in the total UNIT CELL model.

Since the UNIT CELL model has been described elsewhere in this

report, this section present only the results stemming from our efforts in

developing a finite element code for a single sphere which is subjected to

surface forces, internal pressure and/or thermal loading.

GENERAL CHARACTERISTICS OF THE FINITE ELEMENT CODE

The finite element code is developed based on the so-called

degenerated quadratic plate/shell element formulation found in the outlines

of Hinton and Owen [1]. In essence, the usual assumptions made in the

simple plate/shell theories continue to be valid in the formulation of the

code. These include the assumptions of simple bending: the omission of

deformation in the thickness direction and any deformation caused by

transverse shear. Thus, there are only 5 degree-of-freedom at each node;

namely, three displacements and two rotations.

The so-called degenerated isoparametric elements include three
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different configurations: the 8-node Serendipity, the 9-node Lagrangian and

9-node Heterosis. The Serendipity is the simplest, requiring a normal rule

of integration such as the 3x3 Gauss quadrature approach. This type of

element, however, has been shown to yield stiff solutions if the shell is

thin (as compared to it's radius). To improve the accuracy of the computed

stresses, a reduced integration technique such as suggested in Hinton and

Owen [1] may be followed for shells of thin thicknesses. The 9-node

Lagrangian is basically the 8-node serendipity with an additional middle

node in the center of the quadrilateral element. Usually, a full integration

technique must be followed, though the reduced integration method can also

be used. However, problems of reduced rank (or rank deficiency) may

sometimes arise in the stiffness matrix if the reduced integration

technique is used. While the additional node helps to improve the computed

results, it nevertheless causes increased degree-of-freedom of the element

and requires a different set of the nodal shape functions. The Heterosis is a

mix of the Serendipity and the Lagrangian in that the element employs

serendipity shape functions for the transverse displacement w and the

Lagrangian shape function for the rotations. This allows selective

integration techniques to be used. Choice of these different element shapes

is a matter of decision to be made for the specific problem which is to be

analyzed [1].

The code can analyze structures constructed using shell elements,

such the hollow sphere. The material of the sph6re may be elastic and/or

elasto-plastic; the sphere may be concentrically layered with isotropic

and/or orthotropic materials; the applied load may be surface forces (radial

and tangential, concentrated or distributed), internal pressure and/or

temperature changes.
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The code uses the FRONTAL solver for the finite element solution. A

flow chart showing the block structure and the computational flow of the

program is provided in Fig. 2.

A brief version of the user's instruction is provided at the end of this

section.

A listing of the code PLASTOSHELL is provided in the appendix.

REFERENCE

[1] "Finite Element Software for Plates and Shells" Hinton and Owen,

Pineridge Press, Swansea, 1984.
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i Fig. 1 Close Packing of Spheres in A 3-D Fiber Network

!



START

DIMEN

Presets the variables associated with tne

dynamic dimensioning process

INPUT

Inputs data defining geometry. boundary

conditions and material properties

MODAN

Calculates the elasticity matrix and the aniso-

tropic parameters matrix for each material

WORKS

Sets up the thickness and an orthogonal axes
system at each nodal point

BGMAT
Computes the 1 and G matrices, the latter for

0
large displacement analysis

LOADS

Evaluates the nodal forces due to externai

applied loads (centrifugal, gravity, pressure

and point loads)

ZERO

Initializes various arrays to zero If it is

a re-start run reads from a tape the values

previously stored

INCREM
Increments the applied loads according to

specified load factors

CL Sets indicator to identify the type of solution
algorithm. e.g initial stiffness, tangential

Stiffness. etc.

o 2C

Fig. 2 Flow Chart for the PLASTOSHELL Code (continued on next page)
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LDISP
STIFF|Evaluates the large ICalculates the displacement matrix BL

element stiffnessesL
for elastic and

elastoplastic material
behaviour, taking in GEOME
account the geometric Calculates the geo-
nonlinearities for metric stiffness
large displacement matrix K
analysis

FRONT
Solves the simultaneo. s equation system by the

frontal method01
C- a.

z
w~ z

RESTR INVAR
Reduces the stress to Evaluates the effec-
the yield surface and tive stress level

evaluates the equi-

C valent nodal forces

FLOWS
Determines the flow
vector a

~CONVER
Checks to see if the solution process has

converged and evaluates the residual force
vector

OUTPUT

Prints the results for this load increment

F
RESTAR

Records on tape the data needed to restart the
problem in the next increment

ID
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USER INSTRUCTION FOR PREPARING THE INPUT DATA

The program undertakes elastic or ultimate load analysis (if material

is elasto-plastic) of thin, thick and layered plates and/or shells, including

the full sphere. To execute a specific problem, element mesh must be

generated first. This code assumes that the element mesh has already been

generated and that the coordinates of each node are all known. Thus, the

required input data format described below does not include mesh

generation.

The general order of the input data is as follows:

- characterization of elements

- specification of material(s) and shell thickness structure

- nodal coordinate connections

- specification of boundary conditions

. specification of loading

- output instruction

Card Set 1 - Title Card (12A6) one card

Card Set 2 - Control Card (1215) One card

Cols. 1-5 NPOIN Total number of nodal points

6-10 NELEM Total number of element

11-15 NVFIX Total number of points where one or more

degrees of freedom are prescribed

16-20 NNODE Number of nodes per element

8 - for 8 node Serendipity

9 - for Heterosis and 9 node Lagrangian

21-25 NMATS Total number of different materials

26-30 NGAUS Number of Gauss points per element
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31-35 NGAUZ Number of Gauss points per element (Shear)

NGAUS=3, NGAUZ=3 - Normal integration rule

NGAUS=3, NGAUZ=2 - Selective integration

rule

NGAUS=2, NGAUZ=2 - Reduced integration

rule

36-40 NCOLA Set the constraints for the Lagrangian 9

node element:

=0 9 node Lagrangian element (no constraints)

=1 Heterosis - constrain the 9th node dis-

placements (u,v,w)

41-45 NALGO Nonlinear solution process indicator:

=1 initial stiffness method is used

=2 tangential stiffness method is used

=3 stiffness matrix is recalculated in the

first iteration of each increment

=4 stiffness matrix is recalculated in the

second iteration of each increment and

also when there are one or more unloaded

integration points in the previous

iteration

46-50 NINCS Total number of load increments

51-55 NLAYR (i) Total number of layers through the

thickness (PLASTOSHELL)

(ii) Total number of layer patterns in

the structure (CONSHELL)

56-60 LARGE Large deformation parameter

=0 Geometrically linear analysis

=1 Geometrically nonlinear analysis

61-65 NREST Restart facility parameter

=0 to start the analysis

=1 to restart the analysis from the last

previously converged load increment

I
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CARD SET 3 (SF10.5) One Card

Cols. 1-10 GRAVI(l) Gravitational acceleration in the

x-direction

11-20 GRAVI(2) Gravitational acceleration in the

y-direction

21-30 GRAVI(3) Gravitational acceleration in the

z-direction

31-40 ANVEL Angular velocity (referred to the z axis)

(i) PLASTOSHELL

CARD SET 4 - ELEMENT CARDS (1615,/,5X,1515) One or two Cards

for each element

Cols. 1-5 NUMEL Element number

6-10 UATNO(NUMEL)IMaterial property number for each
(NUMEL,'1 , layer, ILAYR from Bottom to Top

56-60 MATNO(NUMEL, (case of NLAYR = 10)
NLAYR)

61-65 LNODS(NUMEL, Element node numbers (anticlockwise)
INODE)

106-110 LNODS(NUMEL, (Case of NNODE = 9)
NNODE)

(ii) CONSHELL

CARD SET 4 - ELEMENT CARDS (1115) One Card for each element

Cols. 1-5 NUMEL Element number

6-10 MATNO(NUMEL) Element layer pattern number

11-15 LNODS(NUMEL,1)

16-20 LNODS(NUMEL,2) Element nodo number (anticlockwise)

46-50 LNODS(NUMEL,8)

51-55 LNODS(NUMEL,9), (Case of KNODE = 9)

CARD SET 5 NODAL COORDINATE CARDS (15,4F5.10/5X,4FI5.lO)

Two Cards for each node whose coordinates must be

input - finishing with the last node. (Coordinates

of the central 9th node and also mid-side nodes

whose coordinates are obtained by a linear inter-

polation of the corresponding corner nodes need not

be input).

I
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First Card

Cola. 1-5 IPOIN Node number

6-20 COORD(IPOIN,1) Top x coordinate

21-35 COORD(IPOIN,2) Top y coordinate

36-50 COORD(IPOIN,3) Top z coordinate

51-65 COORD(IPOIN,4) Top pressure

Second Card

Cola. 6-20 COORD(IPOIN,5) Bottom x coordinate

21-35 COORD(IPOIN,6) Bottom y coordinate

36-50 COORD(IPOIN,7) Bottom z coordinate

51-65 COORD(IPOIN,8) Bottom pressure

CARD SET 6 RESTRAINED NODE CARDS (15,SX,I5,SX,5FIO.6) One

Card for each restrained node. (Total of NVFIX

Cards)

Cola. 1-5 NOFIX Restrained node number

11-15 IFPRE Condition of the degree of freedom:

restrained (=1)

otherwise (=0)

positioa 11 - u displacement (x-direction)

12 - v displacement (y-direction)

13 - w displacement (z-direction)

14 - Bi rotation

15 - S2 rotation

21-30 PRESC(IVFIX,1) - The prescribed value of the nodal

31-40 variables (u,v,wS1 and 62

41-50 respectively)

51-60

61-70 PRESC(IVFIX,5)

(1) PLASTOSHELL

CARD SET 7 MATERIAL CARDS Four Cards for each different

material (Total number of cards = 4*NMATS)

First card (15)

Cola. 1-5 NUMAT Material identification number

Second card (7F10.5)

Cola. 1-10 PROPS(NUMAT,1) E1 Young's modulus in 1 direction
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393
Cola. 11-20 PROPS(NUMAT,2) v12 Poisson's ratio (v1 2 /El=)21/E 2 )

21-30 PROPS(NUMAT,3) t Layer thickness expressed in the

normalised . coordinate

31-40 PROPS(NUMAT,4) p Material density

41-50 PROPS(NUMAT,5) a Coefficient of thermal expansion

51-60 PROPS(NUMAT,6) a01 Uniaxial yield stress (1 direction)

61-70 PROPS(NUMAT,7) H' Hardening parameter (1 direction)

Third card (7F10.5)

Cola. 1-10 PROPS(NU1MAT,8) E2 Young's modulus in 2-direction

11-20 PROPS(NUMAT,9) G12 Shear modulus in 12 plane

21-30 PROPS(NUKAT,10)G13 Shear modulus in 13 plane

31-40 PROPS(NUMAT,11)G2 3 Shear modulus in 23 plane

41-50 PROPS(NUMAT,12)a 0 2 Uniaxial yield stress (2 direction)

51-60 PROPS(NUMAT,13)a 0 3 Uniaxial yield stress (3 direction)

or a e Uniaxial yield stress (At 450 to

1 direction)

61-70 PROPS(NUMAT,14)T 0 1 2 Shear yield stress (12 plane)

Fourth card (7F10.5)

Cola. 1-10 PROPS(NUAT,5)T0 1 3Shear yield stress (13 plane)

11-20 PROPS(NUMAT,16)r0 2 3 Shear yield stress (23 plane)

21-30 PROPS(NUIAT,17)e Angle between the reference

system and the material system

in the layer plane (anticlock-

wise - in radians)

NOTE: The 1,2,3 axes are the principal material axes, with 1,2

being in the plane of the layer.

(ii) CONSHELL

CARD SET 7-A CONCRETE AND STEEL DISCRETIZATION PATTERN Two

Cards for each layer pattern

First card (1615)

Cols. 1-5 NCLAY(ILAYR) Number of concrete layers

6-10 NSLAY(ILAYR) Number of steel layers (ILAYR - Layer

pattern identification number)

Second card (1615)

Cola. 1-5 MACON(ILAYR,ICONL)

ICOnL - Material identification

i
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number for each concrete layer from

bottom to top

MASTE(ILAYR,ISTEL)

ISTEL - Material identification

number for each steel layer

CARD SET 7-B MATERIAL CARDS - Three Cards for each different

material

First card (I5)

Cola. 1-5 NUMAT Material identification number

Second card (7F10.5) FOR CONCRETE MATERIAL ONLY

Cols. 1-10 PROPS(NUMAT,1) E Young's Modulus

11-20 PROPS(NUMAT,2) Poisson's ratio

21-30 PROPS(NUMAT,3) t, Layer thickness expressed in the

normalized , coordinate

31-40 PROPS(NUMAT,4) Material density

41-50 PROPS(NUMAT,5) f1t Concrete ultimate tensile strength

51-60 PROPS(NUMAT,6) f c Concrete ultimate compression

strength

61-70 PROPS(NUMAT,7) £ Concrete ultimate compressive
u

strain

Second card (7F10.5) - FOR STEEL MATERIAL ONLY

Cola. 1-10 PROPS(NUMAT,l) E Young's Moduluss

11-20 PROPS(NCMAT,2) E' Elasto-plastic Young's Moduluss

21-30 PROPS(NUMAT,3) t Layer thickness expressed in

terms of the normalized

coordinate

31-40 PROPS(NUMAT,4) Material density

41-50 PROPS(NUMAT,5) f Steel yield stress
Y

51-60 PROPS(NUMAT,6) s Layer position in terms of the

normalized ; coordinate

61-70 PROPS(NUMAT,7) e Angle between the reinforcement

and the x'-axij (measured anti-

clockwise in radians with

-/2 < < -/2)

!
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Third card (7F10.5) - FOR CONCRETE MATERIAL ONLY

Colo. 1-10 PROPS(NUMAT,8) C Tension stiffening parametera a

11-20 PROPS(NUMAT,9) a Tension stiffening parameter

Third card (7F10.5) - FOR STEEL MATERIAL ONLY

Blank card

CARD SET 8 LOAD CARDS At least one card for each element

First card (315)

Cola. 1-5 NPRES Distributed load indicator

=0 no distributed loads on this element

=1 distributed loads to be input

6-10 NUCLO Number of concentrated loads on this

element (=0, no concentrated loads)

11-15 NBODY Body load indicator (gravity and/or centri-

fugal

=0 no body loads on this element

=1 body loads to be input

Second card (IS,FS.l,2F15.5) [Only exists if NPRES=l]

Cols. 1-5 KPRES Distributed load type indicator

=0 Uniformly distributed load

=1 Hydrostatic load

=2 Load specified as nodal values (See

Card Set 5)

6-10 CFACE = + 1.0 Pressure is on top surface

= - 1.0 Pressure is on bottom surface

11-25 PREVA Uniformly distributed load if KPRES = 0

Maximum value of hydrostatic load if

KPRES = 1

26-40 SURFA z coordinate of zero pressure if KPRES = 1

Third set cards (215,FlO.5) [Only exists if NUCLO > 0]

Numer of cards to be input equals NUCLO

Cola. 1-5 LPOIN Local node number (in the range 1-8) at

which the load is applied

6-10 LDOFN Nodal variable number corresponding to the

applied load

= - x displacement

=2 - y displacement

!
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=3 - z displacement

=4 - - rotation

=5 - 2 rotation

11-20 CARGA Concentrated load value

CARD SET 9 LOAD INCREMENT CONTROL CARDS (2F0.5,315) One Card

for each load increment (total of NINCS cards)

Cols. 1-10 FACTO Applied load factor for the current

increment

11-20 TOLER Convergence tolerance factor

21-25 MITER Maximum number of iterations allowed

26-30 NOUTP(1) Control output parameter of the unconverged

results after the first iteration

=1 - Print the displacements only

=2 - Print displacements and nodal

reactions

=3 - Print displacements, reactions and

stresses

31-35 NOUTP(2) Control output parameter of the converged

results

=1 Print the final displacements only

=2 Print displacements and nodal reactions

=3 Print displacements, reactions and

stresses.

1
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A PROGRAM FOR ANALYSIS OF SHELLS BY THE FINITE ELEMENT METHOD

THIS PROGRAM HS BEEN EXTRACTED FROM THE BOOK
FINITE ELEMENT PROGRAMMING FOR PLATES AND SHELLS

BY HINTON AND OWEN

SURESH N. JULY 1989

**** ********************.******************.******************

SUBROUTINE ALGOR(FIXED, KITER, IITER, KRESLi MTOTV, NALCO,
NTOTV, KUNLO, KINCS)

------ THIS SUBROUTINE SETS EQUATION RESOLUTION INDEX, KRESL

DIMENSION FIXED(MTOTV)
KRESL = 2
IF(NALGO.EQ.1.AND.KITER.EQ.2) KRESL = 1
IF(NALGO. EQ. 2) KRESL=I
IF(NALGO. EQ. 3. AND. IITER. EQ. 1) KRESL = 1
IF(NALGO. EQ. 4. AND. KITER. EQ. 2) KRESL = 1
IF(NALGO.EQ.4.AND. IITER.EQ.2) KRESL = 1
IF(NALGO. EQ. 4. AND. KUNLO. GT. 0) KRESL = 1
IF(KITER. EQ. (KINCS1+1)) KRESL = 1
IF(IITER. EQ. 1) RETURN
DO 100 ITOTV = 1,NTOTV
FIXED(ITOTV) = 0. 0

CONTINUE
RETURN
END

SUBROUTINE BGMAT, FORMS THE [Bo] MATRIX AND THE [G] MATRIX

SUBROUTINE BGMAT(COORD, DICOS, LNODS, MATNO, MELEM,
MLAYR, MMATS, MPO IN, M3POI, NELEM,
NEVAB, NGAUS, NGAUZ, NLAYR, NNODE, NPROP,
POSGP, PROPS, THICK, WEIGP)

THIS SUBROUTINE COMPUTES BMATX AND GMATX (THE LATTER FOR LARGE
DISPLACEMENT ANALYSIS). THESE MATRICES ARE STORED ON TAPE 8 FOR
LATER SELECCTIVE INTEGRATION(TRANSVERSE SHEAR TERMS)CAN BE
ACCOUNTED FOR).

COMMON WORMX(3,24), QVALU, DJACB
DIMENSION BMATX(5,45),BDUMY(8,45),COORD(MPOIN,8),DICOS(3,M3POI),

FUNCT(4), GMATX(2, 45), LNODS(MELEM, 9), MATNO(MELEM, MLAYR),
POSGP(5), PROPS(MMATS, NPROP), THICK(MPOIN), SHAPE(3, 9),

REWIND 
8

LGAUS = NGAUS -NGAUZ
LGAUS = 0 FOR NORMAL OR REDUCED INTEGRATION RULE,
LGAUS = 1 FOR SELECTIVE INTEGRATION RULE

WRITE(5,*)'NELEM IN BGMAT-1,NELEM
DO 100 IELEM = 1, NELEM
WRITE (5,*)'

WRI TE(5, *) 'IELEM=', IELEM
WRI TE(5,*)"

IF(LGAUS. EQ. 0) GO TO 25NBORP = 0
REDUCED INTEGRATION IS USED TO SET UP THE TRANSVERSE SHEAR TERMS OF
RTHE CB MATRIX, FIRSTLY THESE TERMS ARE STORED IN BDUMY MATRIX

CONSI = 1.O/POSGP(4)
CONS2 =-CONSI
ZETSP = 0. 0
KGAUZ = -1
DO 20 IGAUZ =I,NGAUZ
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DO 20 JGAUZ = 1. NGAUZ
KGAUZ = KGA'JZ + 1
EXISP = POSGP(3+IGAUZ)
ETASP = POSGP(3+JGAUZ)
CALL SFR1(SHAPE, EXISP, ETASP)
CALL FUNC (BMATX, SHAPES THICK, NBORP. NNODE, ZETSPi MELEI.COORDs

DICOS, LNODS, IELEM, MPOIN. M3POIGMATX)
DO 15 IEVAB =1,NEVA3
DO 15 IPOSI = 1,2
JPOSI =2*KGAUZ+IPOSI

C DBDUMY(JPOSI, IEVAB) = GMATX(IPOSI. ZEVAB)
CONTINUE

SET UP tB3 MATRIX, AND EGJ MATRIX FOR NORMAL OR REDUCCED INTEGRATION

NBORP= I
DO 50 IGRUS =1,NGAUS
DO 50 JGAUS =1,NGAUS

WR ITE (5, *) 'I GAUS ......JGAUS... ',IGAUS#JGAUS
EXISP = POSGP(IGAUS)
ETASP = POSGP(jGAUS)

WRITE(2'0,*)'POSGP'S IN BGMAT'
WRITE(26,*) POSGP(IGAUS),POSGP(JGAUS)
CALL SFR1(SHAPE. EXISP, ETASP)
WRITE(20,*)'COMES OUT OF SHAPE IN BGMAT'

* WRITE(20,777)((SHAPE(III,JJJ),JJJ=1,9), 1I1,3)
777 FORMAT( lX, 3F14. 7)

ZETSP = -1.0
DO 45 ILAYR = 1,NLAYR
LPROP = MATNO(IELEM, ILAYR)
DZETA = PROPS (LPROP, 3)
ZETSP = ZETSP+DZETA/2. 0
CALL FUNC(BMATX, SHAPE, THICK, NBORP, NNODE. ZETSPD MELEMI

COORD, DICOS, LNODS, IELEM, MPOIN. M3POI, GMATX)
- WR I TE ( 5, *)' H g6 F U N C ENDS 14 #I' ", HH LGAUS

PAUSE
DVOLU =DJACB*WEIGP( IGAUS)*WEIGP(JQAUS)*DZETA

IF (LG AUS. EQ. 0) GO TO 40

SET UP THE INTERPOLATION FUNCTIONS TO REFORM THE SELECTIVE INTGN.

FUNCT(l) =0.25*(1.O+CONS1*EXISP)*(1.0+CONS1*ETASP)
FUNCT(2) =0.25*(1.O+CONS1*EXISP)*(1.0+CONS2*ETASP)
FUNCT(3) = 0. 25*(1. 0+CONS2*EXISP)*(1. 0+CONS1*ETASP)
FUNCT(4) = 0. 25*(1. O+CONS2*F.XISP)*(1. 0-.CONS2*ETASP)

INTERPOLATE THE TRANSVERSE SHEAR TERM OF BMATX FROM 4 TO 9 0. P
DO 30 IEVA3 = 1,NEVAB
DO 30 IDOFN = 4, 5
BMATX(IDOFN,IEVAB) = 0.0
DO 30 INTPO =1, 4
IGASH = 2*INTPO+IDOFN-5
BMATX(IDOFN, IEVAI3) = BMATX(IDOFN, IEVAB)+FUNCT(INTPO)*

BDUMY( IGASH. IEVAB)
CONTINUE

WRITE(S) BMATX.GMATXDVOLU
ZETSP = ZETSP + DZETA/2.0

15 CONTINUE
30 CONTINUE

- J WRITING BGMAT FOR TEST ON UNIT 30
WRITE(30,*) 'IELEM -',IELEM
WRITE(30,666) ((BMATX(I,J)#J=1,45),I1.5)

:166 FORMAT(1X5 5E14. 7/IX. 5E14. 7/-1X, 5E14.7/iX, 5E14.7/iX.5E14. 7
JO CONTINUE,5E14. 7, /lX, E14. 7, /1X,5EI4. 7/IX,5El4.7)

RETURN
END

SUBROUTINE CHECKi, THIS CHECKS THE MAIN CONTROL DATA

SUBROUTINE CHECKI (NDOFN. NELEM, NGAUS, NMAT6. NNODE. NPOIN.
MMATS, NVFIX, NQAUZ. NLAYR)
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DIMENSION NEROR(2Q)
DO 10 IEROR = 1,4

NEROR(IEROR) = 0

CREATE THE DIAGONSTIC MESSAGES

IF(NPOIN.LE.0) NEROR(1) =1
IF(NELEM*N1IDE.LT.NPOIN) NEROR(2) I
IF(NVFIX.LT.2.OR.NVFIX.GT.NPOIN) NEROR(3) =1
IF(NNODE.LT.6.OR.NNODE.GT.9) NEROR(4) =1
IF(NDOFN. NE. 5. OR. NLAYR. GT. 10) NEROR(5) =1
IF(NMATS. LT. 1. OR. NMATS. GT. MMATS) NEROR(6) =1
IF(NGAUS. LT. 2. OR. NGAUS. GT. 3) NEROR(7) =1
IF(NGAUZ. LT. 2. OR. NGAUZ. GT. 3) NEROR(S) =1

EITHER RETUJRN, OR ELSE PRINT THE ERROR DIAQONISE

KEROR = 0
DO 20 IEROPR = 1, 8
IF(NEROR(IERDR).EQ.0) GO TO 20
KEROR= 1
WRITE (6, 900) IEROR

900 FORMAT(//31H,***DIAGNOSIS BY CHECKI, ERROR. 13)
110 FORMAT(25HDIAGNOSIS BY CHECKi ERROR1 13)

CON TINUE
IF(KEROR. EQ. 0) RETURN
OTHERWISE ECHO ALL THE REMAINING DATA WITHOUT FURTHER COMMENT

CALL ECHO
END

SUBROUTINE CHECK2(COORD, IFFIX, LNODS. MATNO. MELEMI MFRON, MPOIN,
MTOTV, MYFIX. NDFRO, NDOFN, NELEM, NMATS, NNODE, NOFIX, N

NPO IN, NVF IX, NLAYR)

THIS SUBROUTINE CHECKS THE REMAINDER OF THE INPUT DATA

DIMENSION COORD(tIPOIN, 8), IFFIX(MTOTV),LNODS(MELEM. 12),
MATNO(MELEM,NLAYR),NDFRO(MELEM),NEROR(20),NOFIX(MVFIX)

CHECK AGAINST TWO IDENTICAL NONZERO NODAL DISPLACEMENTS

DO 5 IEROR = 9,20
NEROR(IEROR) =0
DO 10 IELEM = INELEM

0 NDFRO(IELEM) = 0
DO 50 IPOIN = 2, NPOIN
KPOIN = IPOIN-1
DO 30 JPOIN =1, KPOIN
DO 20 1 D IME=1, 3
IF(CODRD(IPOIN, IDIME). NE. COORD(.JPOIN, IDIME)) GO TO 30
CONTINUE

NEROR(9) = NEROR(9)+1
oo CONTINUE

CONTINUEI CHECK THE LIST OF ELEMENT PROPERTY NUMBERS

DO 50 1 ELEM = 1.NELEM
DO 50 ILAYR =1,NLAYR

IF(MATNO(rELEMI ILAYR). CT. NMATS) NEROR(10) =NEROR(lO)+l

CHECK FOR IMPOSSIBLE NODE NUMBERS

DO 70 IELEM =1,NELEM
DO 60 INODE = 1, NNODE
IF(LNODS(I..EM, INODE).EG.0) NEROR(il) = NEROR(il) + 1

-'0 IF(LNODS(IELEM, INODE). LT.0. OR. LNODS(IELEM. INODE). QT. NPOIN)
NEROR(12) = NEROR(12) + 1

CONTINUE:I
CHECK FOR ANY REPETITION OF A NODE NUMBER WITHIN AN ELEMENT
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DO 140 IPOIN = 1, NPOIN
KSTAR = 0
DO 10 0 1IELEM = 1,NELEM
KZERO = 0
DO 90 INODE =1,NNODE
IF(LNODS(IELEM, INODE).NE. IPOIN) GO TO 90
KZERO = KZERO +- 1
IF(KZERO.GT.1) NEROR(13) =NEROR(13) +1

SEEK FIRST, LAST AND INTERMEDIATE APPEARANCES OF NODE IPOIN

IF (KS TAR. NE. 0) GO TO 80
KSTAR = IELEM

CALCULATE INCREASE OR DECREASE IN FRONTWIDTH AT EACH ELEMENT STAGE

NDFRO(IELEM) = NDFRO(IELEM) + NDOFN
0 CONTINUE

AND CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE

KLAST = IEl EMl
NLAST = INODE

CONTINUE
2 CONTINUE

I F(KS.TAR . EQ. 0) GO TO 110
IF(KLAST.LT.NELEM) NDFRO(KLAST+1) = NDFRO(KLAST+l) - NDOFN
LNODS (KLAST, NLAST) = -IPOIN
GO TO 140

CHECK THAT CO-ORDINATES FOR AN UNUSED NODE HAVE NOT BEEN SPECIFIED

3 WRITE(6,900) IPOIN
30 FORMAT(/13HCHECK WHY NODEI 4, 14H NEVER APPEARS)

.100 FORMAT(,/14HCHECK WHY NODE, 14, 14H NEVER APPEARS)
NEROR(14) = NEROR(14) +1
SIGMA = 0.0
DO 120 1 D I tE = 1, 3

Z~o SIGMA = SIGMA + AIS(COORD(IPOIN,IDIME))
IF(SIGMA. NE.0. 0) NEROR(iS) = NEROR(15) +1

CHECK THAT AN UNUSED NODE NUMBER IS NOT A RESTRAINED NODE

DO 130 IVFIX =1,NVFIX
IF(NOFIX(IVFIX).EQ.IPOIN) NEROR(16) = NEROR(16) +1

2 CONTINUE

CALCULATE THE LARGEST FRONTWIDTH'

NFRON = 0
KFRON = 0
DO 150 IELEI = 1,NELEM
NFRON = 14FRON + NDFRO(IELEM)

9-0 IF (NFRON.GT.KFRON1 KFRON = NFRON
WRITE (6, 905) KFRON

5 FORMAT(//33H MAXIMUM FRONTWIDTH ENCOUNTERLD 15//)
IF(KFRON.GT.MFRON) NEROR(17) =1

CONTINUE CHECKING DATA FOR THE FIXED VALUES

DO 170 IVFIX = 1,NVFIX
IF(NOFIX(IVFIX).LE.0.OR.NOFIX(IVFIX).GT.NPOIN)NEROR(I8) 8)+1

KOUNTO NEROR( 18)+l
U NLOCA = (NOFIX(IVFIX)-1)*NDOFN

DO 160 1IDOFN = 1, NDOFN
NLOCA -NLOCA +1*1' IF (IFFIX(NLOCA).GT.0) KOUNT =1
IF(KOUNT. EQ. 0) NEROR(19) = NEROR(19) +1l
KVFIX = IYFIX -1
DO 170 JYFIX = 1,KVFIX

IF((IVFIX.NE.1).AND. (NOFIX(IVIF'IX).EG.NOFXX(JVFIXf)i2  NEROR(20) = NEROR(20) + 1
KEROR 0
Do 180 IEROR = 9, 20,
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IF(NEROR(IEROR). EGO ) GO TO 180
KEROR = 1j WRITE (6, 910) IEROR, NEROR (IEROR)

3 FORMAT(/!"2'5HDIAGNOSIS BY CHECK2 ERROR, 13,6X,9HASSTD NO.,I5)
CONTINUE

IF(KEROR. NE. 0) GO TO 200

21 RETURN ALL NODAL CONNECTION NUMBERS TO POSITIVE VALUES

DO 190 1IELEM = 1, NELEM
DO 190O INODE = 1, NNODE

J3LNODS(IELEM, INODE) =IABS(LNODS(ELEM, INODE))

0 CALL ECHO
END

SUBROUTINE CONVER

SUBROUT INE CONVER (ELOAD I ITER, LNODS, MELEM, MEVAB, MTOTV, NCHEK.
NDOFN, NELEM, NEVAB, NNODE, NTOTV, STFOR,
TLOAD, TOFOR, TOLER)

THIS SUBROUXTINE CHECKS FOR CONVERGENCE OF THE ITERATION PROCRESS

DIMENSION 8..OAD(MELEM,MEVAB), LNODS(MELEM. 12), STFOR(MTOTV),

NCHEK = 0 TOFOR (MTOTV), TLOAD (MELEM, MEVAB)

RESID = 0. 0
RETOT = 0. 0
REMAX =0. 0
Do 5 ITOTV = 1,NTOTV
STFOR (I TOTV) = 0. 0
TOFOR (I TOTV) = 0. 0
CONTINUE
DO 40 IELEM =1,NELEM
KEVAB = 0
DO 40 INODE = l,Ir4NODE
LOCNO = IABS(LNODS(IELEM,INODE))
DO 40 IDOFN =1,NDOFN
KEVAE = KEVAB + 1
NPOSI = (LOCNO-1)*NDOFN+IDOFN
STFOR (NPOSI) = STFOR(NPOSI) + ELOAD( ZELEM, KEVAB)

TOFOR(NPOSI) =TOFOR(NPOSI) + TLOAD(IELEM,KEVAB)
DO 50 1ITOTV = 1, NTOTV
REFOR = TOFOR(ITOTV) -STFOR(ITOTV)
RESID = RESID + REFOR*REFOR

RETOT = RETOT + TOFORCITOTY) *TOFOR(ITOTV)
AGASH =ABS(REFOR)

IF(AGASH.GT.REMAX) REMAX = AGASH
DO 10 IELEM = 1,NELEM
DO 10 IEVAB = 1, NEVAB

ELOADrIELEM, IEVAB) = TLOAD(IELEM, IEVAB) -ELOAD(IELEM, IEVAB)
RESID = SQRT(RESID)
RETOT = SQRT(RETOT)
RATIO = 100. 0*RESID/RETOT
IF(RATIO. CT. TOLER) NCHEK =1
IF(IITER.EQ.l) GO TO 20
IF(RATIO. CT. PVALU) NCHEK = 999

.0 PVALU = RATIO
WRITE (6, 30) NCHEK, RATIO, REMAX
FORMAT(1HO,3X,17HCONVERGENCE CODE=,I4,3X,29HNORM OF RESIDUAL SUM M
RATIO =.El4.6,3X,18HMAXIMUM RESIDUAL =s E14.6)
RETURN
END
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SUBROUTINE DIMEN(MBUFA. MELEM, MEVABI MFRON. MMATS. MPOIN, MSTIF, MTOTQ.
MTOTV, MVFIX. NDOFN, NPROP. NSTRE. M3POI, MLAYR)

THIS SUBROUTINE PRESETS VARIABLES ASSOCIATED WITH DYNAMIC
DIMENSIONING

MBUFA = 10
MELEM - 20
MFRON = 73
MLAYR = 10
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MMATS = 5
MPOIN = 100
M3POI = 3*rMPOIN
NDOFN = 5
NSTRE = 5
MEVAB =NDOFN*9
MSTIF = (MFRON--1)*MFRON/2
MTOTG = MELEM*MLAYR*9
MTQTV = MPOIN*NDOFN
MVFIX =36
NPROP =17
WRITE(5,*) 'SOME DATA IN DIMENSION'
WRITE(5, *)rIFRON, MLAYRJ MMATSD MPOIN,Mt3POI, NDOFN, NSTREI MEVAB,

MSTIF. MTOTG, MVFIX
RETURN

END----

SUBROUTINE ECHO
SUBROUTINE ECHO

IF DATA ERRORS HAVE BEEN DETECTED BY SUBROUTINES CHECK1 OR
CHECK2, THIS ROUTINE READS AND WRITES THE REMAINING DATA CARDS

DIMENSION NTITL(80)
WRITE (6, 900)

00 FORMAT(//5OH NOW FOLLOWS A LISTING OF POST-DISASTER DATA CARDS) I
0 READ(15,905) NTITL
'i FORMAT(30A1)

WRITE(69 910) NTITL
.o FORMAT (20X, BOA1)

GO TO 10
END

SUBROUTINE FLOWS(ABETA, AVECT, DVECTh LPROP, MMATS, NPROP, PROPS,
SC, A, DMATT)

THIS SUBROUTINE CALCULATES THE FLOW VECTOR -AVECT- AND COMPUTES
-DV~ECT- AND -AI3ETA-

DIMENSION AVECT(5),DMATT(5,5,MMATS),DVECTf5),
PROPS(MMATS, NPROP), SC(S), A(9, MMATS)

SET UP MATERIAL PROPERTIES

HARDS = PROPS(LPROP,7)

COMPUTES THE VECTOR AVECT

L = LPROP
AFUNC = (A(1,1)*SG(1)+2.0*A(2,L)*SG(1)*SG(2)+2.0*A(3,L)*

SG(1)*SG(3)+A(4,L)*SG(2)*SG(2)+2.O*A(5,L)*SG(2)*SG(3)+
A(6,L)*SG(3)*SG(3)+A(7,L)*SG(4)*SG(4)+2.O*A(9,L)*SG(4)*
SG(5)+A(9,L)*SG(5)*SG(5))**O.5

AVECT(l) = (A(1,L)*SG(1)+A(2,L)*SG(2)+A(3,L)*SG(3))/AFUNC
AVECT(2) = (A(2,L)*SG(1)+A(4,L)*SG(2)+A(5,L)*SG(3))/AFUNC
AVECT(3) = (A(3,L)*SG(1)+A(5,L)*SG(2)+A(6,L)*SG(3))/AFUNC
AVECT(4) = (A(7,L)*SG(4)+A(8,L)*SG(5))/AFUNC
AVECT(5 = (A(8,1)*SG(4)+A(9,L)*SG(5))/AFUNC
WRITE(6,910)AVECT

LO FORMAT(8H AVECT =, 5E15.6)
COMPUTE DVECT = DMATX*AVECT

DO 10 I1 1. 5
DVECT(I) =0.0
Do 10 0 =1,5

DVECT(I) - DVECT(I) + DMATT(I,J#LPROP)*AYECT(J)
WRITE(6, 920) DVECT

40 FORMAT(BH DVECT =,5E15.6)
DENOM = HARDS
DO 20 ISTRE =1, 5

DENOM = DENOM + AVECT(ISTRE)*DVECT(ISTRE)
ABETA = 1.0/DENOM

WRITE(6, 930) ABETA
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'930 FORMAT(SH ABETA =, E15.6)
RETURN
END

SUBROUTINE FRAME(N1, N2, N3, NOPN)

MULTIPLE VECTOR AND/OR MATRIX MANIPULATIONS

NOPN = 1, CREATE UNIQUE ORTHOGONAL AXES IN MATRIX Ni INCLUDING VEC
NQPN = 2.SCISSORS ON OTHER TWO VECTORS IN NI, THEN N2 MADE ORTHO
NOPN = 3EST ORTHOGONAL APPROXIMATION TO GIVEN NON-CARTESIAN FRA
NOPN = 4, N2 BECOMES NIT*N2*Nl USING N3 = GASH
NOPN = 5, N2 BECOMES N1*N2*NlT USING N3 = GASH

COMMON WORMX (3, 24), QYALU, DJACO3
WRITE(5,*)'ENTERING FRAME WITH Ni,N2,N3,NOPN AS'
WRITE(%5,*) Nl.N2,N3.NOPN

M3 = NI +~2
12 = N2 -1

WRITE(5,*)'M3, 12 IN FRAME....',M3, 12
IF(I2. GE. Ni) GO rO 10
12 = 12 +3
Il Ni + Ni+N1 + 3 -N2 -12

WRITEC5,*) 'SINCE 12.GE.Ni,I1=',I1,Nl,N2,I2
GO TO (1,2,3,4,5 ),NOPN

* WORMX(1. Il) WORMX(3,N2)
WR ITE(5,*)----=1,1

WORMX(2,1i) 0.0
WORMX(3, Ii) -WORMX(i..N2)
IF( WORMX ( , Il). EQ. 0. 0. AND. WORMX (3, 11). EQ. 0. 0)
(W0RMX(1, 11) = -WORMX(2.N2)

CALL VECT (N2, 11, 12, 4)
GO TO 14

2CALL MATM (11,12, 0,7)
CALL VECT (Ili 12, N2, 4)

q. WR ITE (5, *) 'CALL. ..... .. IG MATMV
CALL M~ATM' (N1,N1,O1 6)

RETUR N
3 11 = Ni +1

12 =Ml3
DO 11 I =1,50
DO 11 N =tA1, MI
CALL MATM(11, 12, 0,7)

12=N
RETURN

CALL MATM(Ni,N2,N3,2)
NLPN =3

CALL MATM (N~3, Ni1, N2, NLPN)
RETURN

5 CALL MATM(Nl,N2,N3,3)
CALL SINGOP(N3, 3)
CALL MATM (NI, N3, N2, 3)
RETURN
END

SUBROUTINE FRONT
SUBROUTINE FRONT(ASDIS, ELOAD. EQRHS. EQUAT, ESTIF, FIXED,

GLOADGSTIF. IFFIX, IINCS. lITER, KRESL,
LOCEL, LNODSa MBUFAI MELEM. MEVAB. MFRON#
MSTIF, MTOTV, MVFIX, NACVA. NAMEV, NDEST5
NDOFN, NELEMI NEVAB, NNODE. NOFIX, NPIVO*
NPOIN, NTOTV1 TDISP. TLOAD. TREACJ VECRY)

THIS SUBROUTINE UNDERTAKES EQUATION SOLUTION BY THE
FRONTAL METHOD.

DIMENSION ASDIS(MTOTV),ELOAD(MELEM,MEVAB).EORHS(MBUFA),
EQUAT(MFRON, MBUFA). ESTIF(MEVAB. MEVAB). FIXEDCMTOTY),
GLOAD(MFROIN),STIF(MSTIF. IFFIX(MTOTV),
LNODS(MELEM, 9), LOCEL(MEVAB)5 NACVA(MFRON), NAMEV(MDUFA),Ii NDEST(MEYAI3),NOFIX(MVFIX),NPIVO(MBUFA),TDISP(MTOTy),
TLOAD(MELEM. MEVAB). TREAC (MVFIX, NDOFN). VECRV(MFRON)
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NFUNC(I,J) =(J*J-J) '2+I
WRITE(50,- *)'VAL.UE OF KRESLJ AT BEGINING',KRESL
WRITE(50.*) 'VALUE OF NDOFN, NPOIN IN BEGIN OF FRONT'#NDOFN,NPOIN

WRITE(50,*)'VALUE OF NTOTV AT BEGINIG OF FRONT',NTOTV
IIRSL =KRESL
WRITE(5,*)'VALUE OF IIRSL AT BEGINING',IIRSL

WRI TE(50. *) 'VALUE OF NELEM, NEVAB '.NELEM, NEVAB
WRITE(50,*)'VALUE OF ELOAD IN FRONT JEGINING'
WRITE( 50,)( (ELOAD(I J),J=1, NEVAB ), 1=1, NELEM)

CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE

WRITE(5,-*)'CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NOm,'
IF (I INCS. GT. 1.OR. I ITER. GT. 1) GO TO 455
DO 140 IPOIN = 1,NPOIN
KLAST = 0
DO 130 1IELF-i = 1, NELEM
DO 120 INOICE = LNNODE
IF(LNODSCIELEM, INODE).NE. IPOIN) GO TO 120
KLAST = IELEM
NLAST = !NOJDE

CONTINUE
0ONT INUE

IF(KLAST. NE. 0) LNODS(KLAST, NLAST) =-IPOIN

CONTINUE

START IY NITAIIGEEYHN TA ATR OZR

WRT,)START V INITIALIZING EVERYTHING THAT MATTERS TO ZERO '

WRITE(5. *) '***MBUFA, tSTIF,KRESL***',MBUFA,MSTIF,KRESL, IIRSL
DO 145 IBUFA =1,MI3UFA

EQRHS(IBUFA) = 0.0
KKR SL = V.RESL

WRITE(5. *) 'KRESL, IIRSL, KKRSL, AFTER EGRHS = 0.0', IIRSL, KRESL,KKRSL
DO 150 ISTIF =1,MSTIF

GSTIF(IST IF) - 0. 0
WRITE( 5,*) '*4**AFTER GSTIF= 0. 0*********'
DO 160 IFRON = 1,MFRON
GLOAD(IFRON) =0 0
VECRV (IFRON) = 0. 0
NACYA(IFRON) =C,
DO 160 IBUFA =1,MBIFA

,.2  EUTIFO.IBF)WRITE(--. 4 'IIRSL,K~KRS:,L,KvRESL AFTER 160 CON', IIRSL1 KKRSL, KRESL

* AND PREPARE FOR DISC READING AND WRITING OPERATIONS

WRITE(5,-)'AND PREPARE FOR DISC READING AND WRITING OPERATIONS'
NBUFA = C'
WRITE(5,-*)'VALUES OF KRESL AFTER DISC... ',KRESL .IIRSLjKKRSL
IF(KRESL.GT.1) NBUFA = MI3UFA
REWIND 1
REWIND2
REWIND 4
REWIND 7

WRITE(5,*) 'AFTER RWINDING II. KK, KR'. IIRSLKKRSLKRESL
ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP
WRITE(5I *) 'ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP':1 NFRON = 0

KELVA = 0
IIRSL = KRESL
WRITE(5, *) ......+VALUE OF IIRSL,KRESL ...... #IIRSLjKRESL

DO 320 IELEI =1,NELEM
WRITE(25,*) 'ELEM, IIRSL'. IELEM. IIRSL
WRITE(5,*) 'JELEM, IIRSL, IELEM iIRSL

IF(IIRSL.GT.1) GO TO 400
KEVAB = 0
READ(1) ESTIF
DO 170 INODE = 1, NNODE
DO 170 1IDOFT4 =1, NDOFN
NPOSI = (lINODE-1)*NDOFN+IDOFN
LOCNO = LNODS(IELEM, INODE)
IF(LaCNO. GT. 0) LOCEL(NPOSI) = (LOCNO-1)*NDOFN+rDOFN
IF(LOCNO. LT. 0) LOCEL(NPOSI) = (LOCNO+1)*NDOFN-IDOFN
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'0 CONTINUE

START AT LOVKKING FOR EXISTING DESTINATIONS

WR TTE( j,*)ISTART BY LOOKING FOR EXISTING DESTINATIONS'
DO 210 IEVA3 =1.NEVAB
NIKNO = IAIS(LOCEL(IEVAB))
KEXIS = 0
WRITE (25,*)'NIKNO AT AFTER KEXIS =0.0',NIKNO. IABS(LOCEL(IEVAB))

WRITE(5, *) 'NFRON=. ',NFRON
DO 180 IFRON =1.NFRON
WRITE(25,*)'IFRON,NIKNO,NACVA IN 180'. IFRONNIKNONACVA(IFRON)
IF(NIKNI. NE. NACVACIFRON)) GO TO 180
KEVAB = K'EVAB + 1
KEXIS = I
NDEST(KEVAE) = IFRON

) CONTINUE
IF(KEXIS. NE. 0) GO TO 210

WE NOW SE8E. NEW EMPTY PLACES FOR DESTINATION VECTOR

DO 190O IFRON4 =1,MFRON
WRITE(25,*)'NACVA AT 190 FIRST',NACVA(IFRON)

1F(NACVA(1IFRON). NE. 0) GO TO 190
NACVA(IFRON) = NIKNO
WRITE(2 .*)'NACvA, NIKNO IN 190 SECOND'. NACVA( IFRON),NIKNO

KEVAB = KEV'AB+i
NDEST(KEVAS) =IFRON
GO TO 200

CONTINUE

THE NEW PLACES MAY DEMAND AN INCREASE IN CURRENT FRONTWIDTH

2 ) IF(NDEST(KEVAE).GT.NFRON) NFRON = NDEST(KEVAB)
2 ) CONTINUE

WRITE(5,*)'COMES OUT OF.WE NOW SEEK EMPTY PLACES..
WRITE(7) LOCEL. NDEST, NACVA, NFRON
WRITE(5,*)'WRITES ON TO UNIT 7'
WRITE(5, *) LOCEL. NDEST, NACVAD NFRON
GO TO 400

1-00 IF(IIRSL. GT. 1) READ(7) LOCEL, NDESTNACVANFRON

WRITE(5,*) 'START ASSEMBLING ELEMENT LOADS'
ASSEMBLE EL.EMENT LOADS
WRITE(5,*)'ELEMENT STIFFNESSES BUT NOT IN RESOLUTION'
WRITE(5,4) 'ELEMENT NO.=', IELEM
WRITE(20,*) 'ELEMENT NO. =',IELEM

WRITE(45,-*) 'ELEMENT NO.=', IELEM
DO 220 1IEVAB =1, NEVAB
IDEST =NDEST(IEVA3)
GLOAD(IDEST) = GLOAD(IDEST) + ELOAD(IELEM. IEVAB)
WRITE(50,*) 'NEVA3.IEVAB. IDEST, GLOAD, ELOAD'

WRITE(50. *)NEVAB, IEVAB, IDESTGLOAD(IDEST),ELOAD(IELEM, IEVAB)

ASSEMBLE THE ELEMENT STIFFNESSES BUT NOT IN RESOLUTION

ZF(IIRSL.GT.1) GO TO 402
DO 222 JEVA3 =1, IEVAB
WRITE(45,*) 'NEVAB, IEVA!,JEVABNDEST(IEVAB),NDEST(JEVAB)'
WRITE(4,*)NEVA3, IEVAB, JEVABNDEST(IEVAB),NDEST(JEVAB)

JDEST = NDEST(JEVA3)
NGASH =NFUN'C(IDEST,JDEST)
NGISH =NFUN~C(JDEST, IDEST)
IF(JDEST.GE. IDEST)GSTIF(NGASH)=GSTIF(NQASH)+ESTIF(IEVABJEVAB) B)
IF(JDEST. LT. IDEST)GSTIF(NGISH)=GSTIF(NGISH)4ESTIF(IEVADJEVAB) B)
WRITE(45,*) 'VALUEOF NGASH. NGISHQSTIF. IDEST.JDESTESTIF.VDSI

WRITE(45. *)NGASH, NGISH. GSTIF(NGASH),GSTIF(NGISH). IDEST,JDEST.

ESTIF(IEVAB, JEVAB), IEVAB,jEA
02 CONTINUE
,.02 CONTINUE

RE-EXAMINE EACH ELEMENT NODE, TO ENQUIRE WHICH CAN BE ELIMINATED
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WRITE(5, *) 'RE-EXAMINE ELEMENT NODE ...........
WRITE(5i *)'......... IIRSLKRESL........'.IIRSLKRESL
WRITE(5,*k)'VLAUE OF NEVA3 =',NEVAB
WRITE(50,*)'ELEMENT NO. =', IELEM
WRITE(50,*) 'VALUE OF GSTIF(406) INITIAL',GSTIF(406)

DO 310 1 EVAB = 1, NEVAB
WRITE(5,*)'VALUE OF IEVAB AT 310', IEVAB

NIKNO = -LOCEL(IEVAB)
WRITE(5,*) 'NIKNO= AT 310',NIKNO

I F(N IKNO. LE. 0) GO TO 3 10

FIND POSITIONS OF VARIABLES READY FOR ELEIMINATION

WRITE(5, *) 'NFRON', NFRON
DO 300 IFRON =1,NFRON
WRITE(5, *) .............+IFRON =+......... PIFRON
WRITE(5,*)'VALUE OF N4ACVAM(IFRON)1 NIKNO'sNACVA(IFRON),NIKNO

IF(NACVA(IF-rONY. NE. NIK'NO ) GO TO 300
NI3UFA =NBUFA + I
WRITE(jO,*) 'IRFON=', IFRON, 'NBUFA=',NBUFA

WRITE EQUATIONS TO DISC OR TO TAPE

WRITE(5,*)'WRITE EQUATIONS TO DISC OR rO TAPE'
WRITE(5, *)'NI3UFA, MBUFA', NBUFA, MBUFA

IF(NBUFA.LE.MBU-FA) GO TO 406
NBUFA =.1

WRITE(5,*.)'VALUE OF NBUFA IF NBUFA GT MBUFA',NBUFA,iIRSL
IF ( II RSL.. GT. I1) GO TO 408
WRITE (2) EQUATE EGRHS, NPIVO, NAMEV
GO TO 406

.op WRITE(4' EQRHS
READ( 2) EGUAT, EGPHS, NPIVO, NAtlEY

CONTINUE

EXTRACT TH-E CO-EFFICIENTS OF THE NEW EQUATION FOR ELEIMINATION
WRITE(5,*)'EXTRACT THE CO-EFFICIENTS OF THE NEW EQUATION'

WRITE(5, *) '++++VALUE OF fKRESL+++', IIRSL, KRESL
IF (I IRSL. 'T. 1) GO TO 404

F(KR ESL. GT. 1) GO TO 404
WR ITE(5, *)' I ... .MFRON=',MFRON, IFRON
WRITE(50,* )'VALUE OF GSTIF(406) AFTER 406 CONT',GSTIF(4O8)

DO 230 JFRON =1, MFRON
IF ( IF R13J L T. JFP ON) NLOC A = NFUNC ( IFRON, JFRON)
IF(IFROJ GE. JFRON) NLOCA = NFUNC(JFRONj IFRON)
EGUAT (0.FR0N,NB11UFA) = GSTIF(NLOCA)

GSTrF(NLOCA, = 0. 0
CONTINUE

AND EXTRACT THE CORRESPONDING RIGHT HAND SIDES
WRITE(5,*" EXTRACT CORRESPONDING RHS'

EQRHS(NBUFA) = GLOAD(IFRON)
GLOAD(IFRON) =0.0
KELVA = KELVA +1
NAMEY (NI3UFA) =NIKNO
NPIVO(NBUFA) = IFRON

* DEAL WITH PIVOT

WRITE(5,*)'NOW START DEALING WITH PIVOT'
WRITE(5, *) 'EQUAT( IFRON, NBUFA), IFRON, NBUFA'1 EQUAT(IFRONNBUFA),
IFRON, NBUFA
EQU A r(3,3) =1. 0

PIVOT =EQUAT(IFRON,NBUFA)
WRITEk50,*)'IFRON,NEUFA,PIVOT'
WRITE ( C, *) IFRON, NBUFA, PIVOT
WRI rE(5, *) 'NIKNO, PIVOT', NIKNO. PIVOT

IF(PIVOT.GT.0) GO TO 235
WRITE (6.900) NIKNO, PIVOT

0O FORMAT(1H0,3X,51HNEGATIVE OR ZERO PIVOT ENCOUNTERED FOR VARIABLE LE N
0. ,14, 1OH OF VALUE 1 E17. 6)

CONTINUE
EGUAT(IFRON,NBUFA) =0.0
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ENQUIRE WH-ETHER PRESENT VARIABLE IS FREE OR PRESCRIBED

IF(IFFIX(NIKNO).EG.0) 0O TO 250

DEAL WITH A PRESCRIBED DEFLECTION

DO 240 .JFPU -i' N11FRON
.3 GLOAD(JFRhJN) = GLOAD(JFPON) -FIXED(NIKNO)*EGUAT(JFRONNBUFA)

GO TO 230

ELIMINATE A FREE VARIABLE - DEAL WITH THE RIGHT HAND SIDE FIRST

'50 DO 270 _FRON = 1, NFRON
GLOAD(JFPON) = GLOAD JFRON4)-EQUAT(JFRON1 NBUFA)*EGRHS(NBUFA) /PIVOT

NOW DEAL WITH THE CO-EFICIENTS IN CORE

IF(IIR'3L. (T 1,~ -0 TO 410
IF(tEQUAT(,.JFRON, U-3LFA).EG.0. 0) GO TO 270
NLOCA =NFliS4C(0': JFFON)-
CUREG EQ'JAT(JFRON,NBUFA)
DO 260 LFPON = 1,JFR(3N,
NGASH =LFRON+NLOCA

Cs GST).F 4GACH) = GSTIF (NGASH) -CUREQ*EOUAT(LFRON, NEUFA) /PIVOT
C 0NT ir4l E

SO0 EQUAT; i'-P 0!, NIUF A) P I VOT

RECORD THE-: NEW- VACANT SPACE, AND REDUCE FRONTWIDTH IF POSSIBLE

NACVACIFROP4)= a
GO TO 290

COMPLETE THE ELEMENT LOOP IN THE FORWARD ELIMINATION

0 c CONTINUE
IF(NACVA(N'FQN:NE0) GO TO 310

NFRON =4rJt -~1
IF(NFRON. G-T 0) GOJ TO 290

:10 CO0N TI NUE
CO PitT I "iE

EQU AT '_ 3', 1 0
I'F(IIRSL.E~t 1) WtRIT(2) EQUAT 1 EGRHS,NPIVONAMEV
BACKSPACE2

WR ITE (5, ') ENTC71RS BACK-SUBSTITUTION PHASE...
ENTER BACV,-SU13ST1TUTION PHASE, LOOP BACKWARDS THROUGH VARIABLES

WR I TE (50, -*' ''ELA=', KELVA, N33UFA
DO 340 IELVA =!, AEL.VA

READ A NEW BLOCK OF EQUATIONS - IF NEEDED

IF (NB UFA. NE. 0) GO TO 412
BACKSPACE V

READ(r 2;' EQUCAT, EGR.HS, NP IVO, NAMEV
BACKSPACE 2
NBUFA =MBt.FA
IF(IIRSL. FG. 1) GO TO 412
BACKSPACE 4

READ (4) EGRHS
BACKSPACE 4

J? CONTINUE
PREPARE TO BACK-SUBSTITUTE FROM THE CURRENT EOUAITON

IFRON =NPIVO(NBUFA)
NIKNO = NAMEV(NBUFA)
PIVOT =EQUAT(IFRON,N3UFA)
IF(IFFIX(NI~NO).NE.0) VECRV(IFRON) = FIXED(NIKNO)
IF(IFFIX(NIKNO -EQ.0) EQUAT(IFRON,NBUFA) = 0.0

WRITE(50,*) 'IFRGINNIKNO, PIVOT, VECRV(IFRON).FIXED(NIKNO)'
WRITE('50,*)IFRON,NIKNO,PIVOT,VECRV(IFRON),FIXED(NIKNO)

BACK -SUBSTIrTUTE IN THE CURRENT EQUATION
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DO 330 JFRON 1,MFRONt
0 EQRH3--!N63UFA' E0Ri-,HS(ND~UFA)-VECRV(JFRON)*EOUAT(JFRON NBUFA)

PUT THE F-INAL VA!_UES WHERE THEY BELONG

IF(IFFIr ktwINO). EQ.0).' VECRV.(IFRON) = EGRHS(NBUFA) /PIVOT
IF(IFFIXiNTKNO:. NE. 0) FT'KED:NIrNO) = -EQRHS(NI3UFA)
NBUFA = NDUFA -1
ASDIS(NIKNO) = VECRV(IFRON)

.40 CONTINUE

WRITE(5,-) 'ADD DISPLACEMENTS.......
ADD DISF'LACEMENTS TO PREVIOUS TOTAL VALUES
WRITE(50,*3:) 'NrOTV=', NTOTY
DO 345 ITOTV = 1, NTOTV

5~ TDISP(ITGTV) =TDISP(ITOFV)+A0DIS(ITOTV)

WRI TE(50- *) 'NT!7TV, TDISP, ASDIS'
WR ITE 3c,,*INTO Pw, (TODISP (ITO), ITD= 1, NTOTV)
WR ITE(55, *U c7 (I TA),I TA= 1, TOTV)

STORE REACTIONS FOIR PRINTING LATER
KBOUN = I
DO 370 IPOIN =1, NPIDIN
NLOCA = kPOFIN-!'-iNUOFN
DO 350 IDQORN =i,NDOFN
NGUSH = rdL.OCA+Il'tFN
[F(IFFfx(U'JC USH T Q GO TO :360

.70 C 0N TI c UE
GO TO37

DO CIL'OtN~ =1 IDF
NGASH =NLOCA + IDOFN

TREAG(KBCUN, IUFN) = TREAC(KEOUN 1 IDOFN) + FIXED(NGASH)
WRITE(5,4) 'IDOFN JV2OUN, TREAC(KBOUN. IDOFN, FIXED,NGASHI

7, WRITE CS.54- IDOFN, V.301_1, TREAC(KBOUN, IDOFN), NGASH.FIXEDCNGASH)
KBOUN = Br0UN +1

_-0 CONTINUE

ADD REACTIONS INTO THE TOTAL LOAD ARRAY
WR I TE 5. 'ADD REAC T ONS'

DO 700 IPOIN'l =1.;,POIN
Do 710 1IELEMV = ,NELEM
DO 710 IN.CE =I, tNCDf',E
NLOCA =IABS(LNODlS( TELEM. INODE))

10 1IF ( I F !N. EQ. NLC A) GO rO 720
* DO 7-30 IDOFN =1, NDOFN

NGASH = (l('13DE-1)*ND0FN+IDOFN
MGASH =CIPOlt4-1)*NDOFN+IDOFt4
WRITE(50,*) 'TLOAD(IELEl, NGASH), IELEM,NGASH'
WRITE(50-4) TLOAD(IELEM,NGASH), IELEM,NGASH

D TLOAD' IELEM~ rjGASH) =TLOAD(IELEM. NGASH)+FIXED(MGASH)

CONTINUES-;.T RETURNING FROM FRONT'
GO TO 533

3 RETURN
END

SUBROUTINE FUNC
SUBROUTIr',E FU1G (13MATX, SHAPE. THICK1 NBORP. NNODE, ZETA, MELEM,

COORD, DICOS LNODS, IELEM,MPOIN.M3POIGMATX)

SETS UP THE [B]) MATRIX AND JACOBIAN, BEING THE MOST CHARECTERISTIC

SUBROUTINE OF THIS ELEMENT

COMMON4 WORMX (3, 24), QVALU, DJACB
DIMENSION BMATX(5, 45),SHAPE(3,9),THICK(MPOIN),GMATX(2. 45),

COORD(MPOIND 8).DICOS(3, M3POI). LNODS(MELEM. 9)

THIS CREATES X. Y, Z IN COLUMN 1 AND J-TRANSPOSE IN COLUMN 2-41 DO 20 I =1,3
DO 20 J =1,4
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0WORMef lU;. = Ci 0

WRITE( '2C0 -'1 'SH.AP E I N F N C

38 FORMAT( IX, -F-4 -7)
THE ELEIlENT GEOMIETRY IS DEFINED BY THE 8-NODE SERENDIPITY
PPN = 8

DO 24 ILNOV-- =1,PPNj
IPOIN = 1m13(LNODS( IELEIM, INODE))

WRITE~l5,* '$$$!P0IN IN FUNC$$$$', IPOIN, IELEM5 INODE
DO024K ': 3
GTOP = OORD( IPOIN; V.)
GBOT = ORDIFIPIN.V±-41
GOSH =(1 G..+ZLETrA*GTOP + ('1. 0-ZETA)*GBOT)/2.O

WRI TEk ':) 'GTOPi GBOT, GOSH. 'GTOP, GBOT, GOSH
DO 22 ! -1.

WR I T ( 70 - WOPMX(J) 'WORM K, J), K=', K,'J=', J
0 R .1 "'XCV.. W- -~R IX , J)+GOSH*SHAPE(J, INODE)

:4 W09 X(K, 4) wQOR~t'"K4) + SHAPEU.; I NODE)* (GTOP-GBor) /2.O0
THIS CREATES J fNVEr'SE IN COLUMNS 5-7 OF WORMX

C ALL M A Tt 11 0
DJACL

EXIT rnp CA:L-'W h~iN J. J-IN'-VERSE AND DET-J ONLY ARE REQUIRED
!F(NEORP. Ell ;*O f-- 50
THIS REAT'ES DIFECTION ZETA NORMAL TO XI AND ETA

CALL VECT(2" '. 4)
THISC.RE!P'TE5A ; CAPTESIAN SET
NFR

CALL FRAN~E fNFr 100 1)

CREATES THE TERMS OF STRAIN/DISPLACEMENT MATRIX

DO 40COO
DO 40 INODE =-1
DO0 4 0 J = 1, 5

5 SHAPE F("T ON CEATED AT A NORMAL
NSHAP =5* i.NO'E )+.

WR ITE (2(,, 1!,J INPE, .JNSHAP '. NODEJNSHAP
DO 26 1 =I1, 17
DO 026 K = 1,

7'WORMX(! ' C
IF (J. GE 4. CC' ': 30
DO 29 ? : ! .h'

SHAPE A"J 4E* ETIA DERIVATIVES
U4ORW il . _- iL A INODE)

GO TO+
'U ~JPOSL -

...pc=, 1, r-JFN L,0-, L X, Y DErLEC T IONS OF ENDS OF NORMA
DO 3 5 IM =1.3

* X, Y, 7 COM1POtJENTS OF LOCAL X, Y DEFLECTIONS
IPOIN = IArSS( k2DIELEM, INODE))
IPOSI = ~IPC)I N-I
GASH 'Y1T1LPS
ItF(JPCFI NE 2' GO TO 3'2
GASH

2 DO 34R 14
SHAPE AND ITS XT, ETA DERIVATIVES - K-4 GIVES SPECIAL ZETA DRIVATIVES

IF(K. EG. 4) GO TO :11
WORMX 'Mt. A+!O) = ZETA*SHAPE(., NODE)*GASH*(THICK(IPOIN)/2. 0)

1*U, VW ARE NOW IN COL I1I
GO TO -4

'1 WOM' I ~'+Q) =SHAPE(1, INODE)*CASH*(THICK(IPOIN)/2. )
CONTINUE"I CONT INUE

THIS TRAN3 POSES XI,ETA AND ZETA DERIVATIVES OF U#,W
CALL SINGOP (12,3)
WRITE(5 ,*)'COMES OUT OF SINGOP, ~J =',J*1* MULTIPLIES BY J-INVERSE TO FORM X-Y-Z DERIVATIVES OF UV.W

C ALL '1A -j"I( 1 2, 1 5,3)
TRANSF-CERS X, Y. - DERI-ATIVES OF U, VW FROM COL 15 TO COL 19
WR ITfE ( -*-,) 'ENTERS lATM WI TH NPON = 8'IPNCALL MlAil TIM 1 '- 0, PJPN)

*WR1-TE (5i,*'COMiES OUT 'OF NIA VM WITH NOPN =31
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WRITE 5 , ~ 'CO3 iUl OF TIATM WITH NPON = 8'
WRITE(2CQ, 4) l'W"LJE OF WORIIX IN FUNC

11 WR IT E (" 20,9 W,9RMX(!!;I, JVJ),JA =1,24), IKI=1,3)
191 FORM '> 1 1 4.~ 7)

THIS CC'1 'ERT TO LO'-!C-FAL AXES AT INTEGRATING POINT

JNN 10
KNN=:

CALL FR.k-,E iJN NN, KNN, 4)
WR I TE( ,f
WR ITE ("I:)C M E cO0UTO0F FR A ME IN F UNC'

WR ITE . ,'A~ OF WORMX IN FUNC
WRI TEC 20, 1I' '(WORMX(IV.I,JKJ),J;4J=1,24),IKI=1,3)

,L191 FORtMAT'IX, 3E!4 7)

SETS u S'rATN MATRIX TERMS
I F (N B P p, C.-, T2 39
B11 A TX "frI , ~P C %rX1 Re

D ;ITX (3~~--~' 312, 13: + WORMX(l1 19)
r~~~tlAt((i 240)7AFM + WORMX(3-; 18)

r ,A TX ( 5, Ni -A F N x2, 2-0) + WO0R M X3, 19)
* WRITE(20:-*' 'COMPONENTS OF BMATX'

LOCL £TA'-'IN ZT1ATX IN THE ORDER XtV YXV, XZVZ
GMATX k1, NSHARF'. WORMlX '1, 20)
GMTX (2, NSHARP- WORMX(2:- 20)

LO0CA L T'0 IV-v-VES GO IN -GMATX- IN THE ORDER DW/DX, DW/DY
GO TO 40

* CONTi
TRANS,4EE -' TERMS~ FOR SELECTIVE INTEGRATION

GMiATX 1, 'SHAP) !-W! iX ' I2Q )+WORMXc3. 18)
GlMATX (2,lNJSHAP) = '-lOFvM X(2,2O0)+WORM X(3, 19)

C ON TI IUE
WRITE(;5,*) 'C 0 Mi E S 0 U T 0 F 4 0'
PAUSE
GO TO 50 'ErRIGBC OBMTWRITE(5 - RTRIG~AM OBMT
RET URN

END

SUIBRUT11"'!1ZINKAU3, POSGP, WEIGP)

THIS EU[3R.lY!-'E cETS UP THE GAUSS-LEGENDRE INTEGRATION CONSTANTS

DIMENSION F'jJLP(" .WEIGP(5)
DO 2 1IGASH =1, 1,
POSGP(IGASH) = '.0

2 WEIGP(IGASH) = 0
IF(NGAUS CT,2) GO TO 4
POSGP(1)' -0 177350269189626
WEIG0P !) 1. 0
GO TO e
POSGP(1, z -0 7745P6669241483

POSGP (2) =0. 0
WEIGP (1) 0. 555555,5555555556
WE OP (2) =0. 8828888888868889

3KGAUS = NGAUS/2
DO 10 1IGASH =1, KGAUS
JGASH = NGAJS + 1 -IGASH
POSGP(JGASH) = -POSGP(IGASH)
WEIGP(JOASH) = WEIGP(IGASH)

CONTINUEI EXTRA POSITION FOR TWO GAUSS POINT RULE(SELECTIYE INTEGRATION)
POSGP (4) = -0. 57735026918926
WEI GP (4) = 1. 0
POSGP(5) = -POSGP(4)
WEIGP(5) = WEIGP(4)
RETURN
END

SUBROUTINE GEOME(ESTIF. GMATXI STRSG, MEVAB, NEVAB. MTOTQ. KGAUS, DVOLU)
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THIS SUBROUTINE CALCULATES THE GEOMETRIC MATRIX -GEMTX-

DIMENSION ESTIF(MEVAB.MEVAB),GMATX(2 45),STRSG(5,MTOTG~o 5)
GEMTX(45,45), GDUMM(2,45),STDUM(2p2)

DO 5 IEVA3 =1,NEVA3
DO 5 JEVAB =1,NEVAB

GEMTX(IEVAB,JEVAB) = 0.0

SET UP -STUOM- MATRIX WITH THE ACTUAL IN-PLANE STRESSES
STDUM(l.1) = STRSG(1,KOAUS)
STDUM(1,v) = STRSG(3.KGAUS)
STD)UM(2,Y) = STRSG(3,KGAUS)
ST:DUM(2.2=) = STRSrG(2,KGAUS)

EVALU-IATE THE PRODUCT OF STUDM*GMATX
DO 10 I =1,2
DO 10 IEVAD = ,1EA

DO I C, .2 T
O CD~~r 1 ~,tEVA'"mu~(1 IEVA3) +STDUM(I, J) *GMATX (J, IEVA3)

CALCL'LA FE THE~''ETI MATRIX
70~ 4X EYAr. =It

GEN TX, E~' )EVA-)=G~ErTX,' IEVAR , JEVAi3)+GMATX(I, IEVAI3)*
'&DUrIM (I1, JEVAB ) *DVOLU

EV AL 'A TE -4.E t4EN STI~rNESE MRwIX ADDING -GEMTX-
Do ' 4.' r,

orz -. , y* I"=:v!): NE'.AE
EE T 1F 1 EVAIJC. zE TIF!IE A~ JEVAB)+GEMTX (IEVAB, JEVAB)

R!E-T'J'R N

SUBRL3UrTriE C.74,': LAD. F I'!NEED hI NCS, Ma.LEM, MEVAB, MITER,
N,T,' FV IIVF !:-, 1400FN, NELEM, NEVAI3, NOUTP,

i fFV, N-TOT','. :,ItF IX, PRESC, RLOAD, TFACT,
TL_124D* TOL-'-L LNDDS, 1FF IX, NNODE, NCOLA,
r RES. TK1if "

-1 4- -~~* * ~ * * * * * * * *

THc.L2T T~ APPLIED LOADING

0 1MEN E7 I E'*, -. Lt1rEAB), F 1 ED (MTOTV), NO'TP (2), NOFI X(MVFI X),
i~~T'i, frZ2FN). PLOAr; M.ELEM, MEVAB), TLOAD (MELEM. MEVAB),

N~ fU'< NF'E _i, .Thcs, NEVAB'

IF(NREST EQ 0:' G9 i 020
IF~I~C~GT rTCS. 0 TO) 20

DO 1 rT fY: 1 P llNr S
REA' ,I . % - FkC T'ji

*WR I ':E tt, c;C0, I t C
)00 FORMAi (///, 5X, 22H### INCRElf-NT NUMBER *15)

READ(15,950% FACTO, TOLER.,MITER, NOUTP(l),NOUTP(2)
* )FGRtlAT;;2F1C0 1, 31!'

TFACT = TFACT 4- FACTO
WRITE 6, 56C TFACT, TOLER4 rIITER. NOUTP(1). NOUTP(2)60 FORMAT(tPO,5X,13HLOAD FACTOR =,FIO.5'SX.

24H CONVERGENCE TOLERANCE =, F10. 5. 5X', 23HMAX. NO. OF ITERATIONS-,,
15,//32H itIrTIAL OUTPUT PARAMETER =,I5.SX,26HFINAL OUTPUT PA
ARAMETE"J =, 15)

WRI TE(5O, *) 'FACTO=', FACTO
0O eo I ELErl I ~ NELEM

:1 DO 30 IEV.A13 =INEVAU
ELOAD([EL EM4 [EVAB )=ELOAD( [ELEII, [EVAB ;+RLOAD( IELEM, IEVAD )*FACTO
TLOAD( [ELEM. IEVAD) =TLOAD( [ELEM. IEVAB )+RLOAD( IELEM, IEVAB )*FACTO

40WRITE(50, *,'ELOAD IN 80'. ELOAD' IELEM. IEVAB). IELEM, IEVABRLOAD(
IELEM. IEVAS):1 WRITE(!50,*)'SOME OUTPUTS FROM INCREMEN'
WRITE(50,*) 'FACTO=',FACTO
WR ITE (30, *) 'RLOAD'

WR ITE(60, *) 'ELOADj'
WRITE(SO,*)((ELOAE,(IL,JL),JL=1,NEVAB),IL=1,NELEM)
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WR ITE (50,~ "LAD
WRITE(50,(; tL-OA!I'L-,jL),~jL1,NEVAB), IL1,NELEM)
INTRPRET F1TYT DATA IN 1VECTOR FORM

DO 100 I'1T' =11,:,47-7
00 F IXED ( IlOTV) 0. C

WR ITE (5, d- 'I VF I X', NVFI X
DO 110 IYkF IX = i . VYFI X
NLOCA , (N-F I X( ;,F IX I~ND
DO 110 IDOFTN =11,DOFt
NGASH =NLC)CA+lIDOFN
FIXED (NG~ sz" FRESCJ VFIX. IACOFN)-*FACTO

WRITE(' *J~ FI YE)" N-AS:J', PRESC. FACTO'
WRITE C GA FIE'4AH.'PECiF IDOFN)o FACTO

10 CONTV :-F

ADD I TID OtN CflIThI7A1NTS FOR THE HETEROSIS ELEMENT
IF(NNODE F~ 13 N'COLA. NE. 1) : 0 TO 130
DO 120 TE% FL N 3D 9 E:'. I EL -
NLOCA f '1 4-JF

I DOF 11=2
DO0 120 I0DOlFN I1.. 3

o IFF I X(NAsH'' I
- 2 CONTINUE

RETURN
END

SUB3ROU'TINE INQUT

SUBROUTINE ILNPUT: ANVE.,;:L: CLIJRD ' RAI, IFFIX, LNODS,
MArCNO, MFRON. MELEMI MMATS, MPOIN,
MI OTV, rlYVF I X, PNDFRO, NDOFN, NELEM, NCOLA,

rEA NGAtJS, NGAUZ, NMATS, NNODE, MLAYR,
NO:FIX, KPO IN, N7ROP, NTOTG, NLAYR, NREST,
N4TOrv, NYFIX. POSGP PRESC, PROPS. WEIGP,
NAL90. NIliS. LARGE)

THIS E"T)I ACCEPTS MOST O~F THE INPUT DATA

DIMENSION mPMOI.;IFFIX(MiTOTV),LNODS(MELEM,9),

NOFIX (11VFI X), FOSC 2: PRESC (MVFIX, NDOFN),
P~0~i1,TSrNPCI:"T iTLE (12), WEI GP(5)

READ( 15, T'C TLE
WRITE(6.9 - ) T 1TLE

)20 FORIMAT712A6)

READ THE FIRST DATA CARD, AND ECHO IT IMMEDIATELY

READ(.15, 9C;' r4POiNNELEM. NVF'X, NNODE, NMATSD NGAUS, NGAUZ, NCOLAJ
NALGO, NiNCS. NLAYR. LARGE. NREST

WR ITE ( 5, ;400 ' L4r-0 1 N, NELEM, NYF IX NNODE, NMATS, NGAUS, NGAU Z, NC OLA,
NALGO. NLNCS, NLA\'R, LARGE, NREST

NEVAB = NDOFN*NNODE
NTOTV =NPOIN*NDOFN
NGAU2 = NGAUS*PJGAIJS

N'oG= t'.ELEM.*KlGAU2*NLAYR
W4RI TE(5, *)'NEVAJ3, rJDOFN, NNDD-EINPOIN. NGAUS. NAGU2. NLAYRJ NTOTV'
WRI TE(5, *)NEVAI3, ND)OFJ NNODE, NPOINs NGAUS, NGAU2, NLAYR, NTOTV

WRITE (6, 901) N-POIN, NELEM, NVF IX, NNQDES NMATSD NGAUS. NQAUZJ NEVABI
NCOLA NAGNNS YR,LRGE .rT 1/X8VI=I

5X.8H NGAUZ -,I5/5X,SH NEVAB =,I35SH NCOLA =,15/5X,
L3H NALGO =, I5/5x. SH NINGS =,15,1/,
5X,SH NLAYR =,I5/5X,8H LARGE =,I5/5X#SH NREST =,15)

WRITE(6, 912')
READ( 15,913) GRAVI(1),GRAVI(2),GRAVI(3),ANVEL
WIE(6,913) GRAVI(1),GRAVI(2).GRAVI(3),ANVEL

71 ORMAT(//41H X-GRAVITY V-GRAVITY Z-GRAVITY ANG VEL 1

W1 FRIAT5IO)
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CALL CHECK 1(NDtJFNq, ELEM, NGAUS, NMATS, NNODE, NPOIN,
NMATS, NVFLfX, NGAUZI NLAYR)

READ THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS

WR ITE (6, Q0')
2 FORMAT( //8H ELEMENT, 5X, 15H PROPERTY/LAYER, 35X, 12HNODE NUMBERS)

DO 2 IELEM11 =1.1NELEM
READ( 5, 99?' NUMEL, (MATNO(NUMEL, ILAYR), ILAYR=1, NLAYR)
READ( 15,79'9; (LINQDS(NJMEL, INODE), INODE=l, NNODE)
WRITE (6, 903) NUrIEL, (MATNO(NUMEL, ILAYR), ILAYR=l, NLAYR)
WRITE(5, 90Z3) NU-MEL,('MATNO(NUMEL, ILAYR). ILAYR=1, NLAYR)
WR IT E(6, 940 1 ) LNODS NUMEL, INP4ODE), INODE=1,NNODE)

WRITECS.9401) LNODS'NUrEL, IN ODE), INODE=1.NNODE)
03 FORMAT(l1~5,4X, 1015)

*01 FORMAT(12I5)
9 FORMAT% 1115)

ZERO ALL THE NODAL COORDINATES, PRIOR TO READING SOME OF THEM

DO 4 IPOIN =1-lNPOIN
DO 4 IDIME =1, E

COORD( IPJIN', TIDIE) E 0. 0

D10 READ SOM~E NODAL CO-ORDINATES, FINISHING WITH LAST NODE OF ALL

WRITE (6. 904)
?04 FOR11AT(.,'SH NODE, 8X, IHX, 14.X, 1HY, 14X, 1HZ, 13X, 5HPRESS)

- ~READ(15i905) IPOIN-, COORDCIPOIN. IDILME), IDIME=1,8)
WRITE(5, 905) IPOIl, (COORD(IPOIN, IDIME), IDIME=1,8)

7 5FORMAT( I5,4F15. 10/5X, 4Fl5. 10)
IF(IPOIN. NJE. NPOIN) GO TO 6

INTERPOLATE CO-OPDTNATES OF MID-SIDE NODES
CALL NCDEX(CORD, LNIJDSithELEM. MPOIN, NELEM, NNODE)
DO 10 IPGLN -= 1, NPOIN

WRI TE(6, 9C-6) 1P01r4. (COOPD(IPOIN, IDIME), IDIME1l, i)
WRITECS 906) IPOIN, (COORD(IPOIN, IDIME), IDIME=1,8)

45 FORrIAT(I5, 4F15. 10/'5X, 4F15. 10)

READ THE FIXED VALUES

WR i rE (6. 90 7,
FORMAT,'/SH NZJDE,6X,4HCODE, 5X, 12HFIXED VALUES)

DO 8 1 IX = 1, NlyEFI X
READ ( 15, %7183)NO! - fI ~VF I X) I FPRE, CPRESC ( IVF I X I DOFN), I DOFN= 1,NDOFN)
WRITE(,190)NO:X(II,FIX), IFPRE. 'PRESC(IVFIX. IDOFN),IDOFN=1,NDOFN)
NLOCA = %NFIX.iV'FIA;1'*,N C0F N
IFDOF =l0**(r4DCFN-1
DO 8 IDOFN =1,tJDOFN
NGASH = NlO0CA-+IDOFrN
IF(IFPRE LT' IFDOF)GO TO a
IFFIX(NGASIA = 1
IFPRE =IFPRE - IFDOF

3 IFDOF =IFDDF/10
? 9 FORMAT( IX, 14, 5X, 15, 5X, 5F10. 6)

READ THE AVAILAELE SELECTION OF ELEMENT PROPERTIES

WRITE (6, 910)
3' FORMAT(//6H NUMAT, lOX, iSHELEMENT PROPERTIES)

DO 18 IMATS =1, NMATS
READ( 15, 9002) NUMAT

'102 FORMAT(I5)
READ( 15,930) (PROPS(NUMAT. IPROP), IPROP=1.NPROP)

3 FORMAT(7F10 5/7F10. 5/3F10. 5)
ASe WRITE(6,911DNUMAT,(PROPS(NUMAT, IPROP). IPRDP1.,NPROP)

W R ITE (5, * )'.,. .. NUMAT, PROPS ........
WRITE(6. 9002)NUMAT1 WRITE(6,9003)(PROPS(NUMAT, IPROP), IPROP=1.7)
WRITE(6, 9003) (PROPS(NUMAT, IPROP). IPROP=8,14)
WRITE(61 9004)(PROPS(NUMAT, IPROP). IPROP=15. 17)

? F3 FORMAT(7E12. 5)
? 4 FOR MAT (3E1 5. 5)
I WRITE(5,*)NUMAT, (PROPS(NUMAT, IPROP), IPROP1,#NPROP)

:?11 FORMAT(lX, 14, 3X, 7EI3. 3/o 8X,7E15. 5/oSX, 3E15. 5)
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SET UP THE GAUSSIAN INTEGRATION CONSTANTS
CALL GAUSS42(NGAUS, POSGP, WEIGP)
CALL CHECK2CCOOR".IFFIX, LNODS. MATNO, MELEM, MFRON. MPOIN, MTOTV,

MYVFIX, NDFRO, NDOFNJ NELEM. NMATSD NNODE, NOFIX, NPOIN,
NVFIX. NLAYR)

RETURN
END

SUBROUTINE INVAR
SUBROUTINE INVAR(A, ST, LPROP. MfATS, YIELD)

THIS SUBROUTINE EVALUATES THE CURRENT VALUE OF THE YIELD FUNCTION

DIMENSION ST(5), A(9, MMATS)
L=LPR OP
GASH = A(1,L)*ST(1)+2.0*A(2,L)*ST(1)+2.O*A(3,L)*ST(1)*ST(3)+

A(4,L,-*ST(2)*ST(2)+2.O*A(5,L)*ST(2)*ST(3)+A(6,L)*ST(3)*ST(3)
+A(7,L)*ST(4)*ST(4)+A(8,L)*ST(4)*ST(5)+A(9,L)*ST(5)*ST(5)

YIELD = SORT(GASH)
RETUR N
END

SUBROUTINE LDrSP
SUBROUTINE LDISP(BMATX.G-MATX. ETDIS.NEVAB)

THIS SUBROUTINE EVALUATES THE INITIAL DISPLACEMENT MATRIX -I3LARG-
AND ADDS IT UP TO BMATX

DIMENSION BMATX(5,45),GMATX(2,45),ETDIS(45),ADUMM(3,2),)
BLARG(3, 45)

CALCULATE THE ACTUAL -X- AND -Y- DERIVATIVES OF -W- DISPLACEMENT
DWDXX =0.0
DWDYY =0. 0
DO 10 IEVAB =1,NEVAB
DWDXX = DWDXX+GMATX(1, IEVAB)*ETDIS(IEVAB)

* DWDYY =DW&DYY+GMATX(2, IEYAB)*ETDIS(IEVAB)

SET UP THE -ADUMM- MATRIX
ADUMM(I,1) =DWDXX
ADUMM (1, 2) 0 0
ADUtIM(2,1) =0.0
ADUMM(2,2) = DWDYY
ADUMM(3,1) = DtDYY
ADUMM (3 2) =DWDXX
NOW CALCULATE THE -BLARO-- MATRIX

DO 20 IEVAB =L,NEVAS
DO 20 1 =1,3
BLARG (I, IEVAB3 0. 0
DO 20 J=1,2

BLARG(I, IEVAB)= BLARG(I. IEVAB)+ADUMM(I,J)*GMATX(J, IEVAB)
THE NEW -BMATX- IS EQUAL TO -BMATX+BLARG

DO 30 IEVAB =1,NEVAS
DO 30 I=1,3

BMATX(I, IEVAB) = BMATX(I. IEVAB)+BLARQ(I, IEVAB)
RETURN
END

SUBROUTINE LOADS
SUBROUTINE LOADS(ANVEL, COORD, ELOAD, GRAVI, LNODS,

MATNO, MELEM. MEVAB, MMATS, MPOIN, DICOS,
NELEM. NEVA3.NGAUS. THICK,
NNODE, NPROP, NSTRE, POSGP, M3POI,
PROPS. WEIGP. MLAYR, NLAYR)

THIS SUBROUTINE EVALUATES THE NODAL FORCES DUE TO EXTERNAL
APPLIED LOADS(CENTRIFUGAL. GRAVITY. PRESSURE AND POINT LOADS)

COMMON WORMX(3. 24), QVALUI DJACB
DIMENSION BMATX(5, 45), CDORD(MPOIN, 8).

ELOAD (MELEMt MEVAB). GRAY I(3). LNODS (MELEM. 9),
MATNO(MELEM, MLAYR), POSGP(5). DICOS(3, M3POI),I. PROPS(MMATS. NPROP). SHAPE(3. 9). STREN(5,
THICK(MPOrN),WEIGP(5),GMATX(2,45)



Page 19

REWIND 8

LOOP OVER EACH ELEMENT
DO 150 IELEXI =1,NELEM

READ THE CHARECTERISTICS OF THE APPLIED LOADS

WRITE(60,*) 'ELEMENT =', IELEM

READ( 15, 900) NPRES, NUCLO, NIODY
WRITE (60k 901) NPRES, NUCLO, NIODY
WRITE (6, 901) NPRESI NUCLO, NBODY

-0 FORMAT( 515)
'01l FORMAT(8H NPRES =,I5,5X18H NUCLO =,5X,SH NBODY =,I5)

IF(NPRES. EQ. 0) GO TO 3
READ( 15, 902) KPRES, CFACE, PREVA. SURFA
WRITE(6, 902) KPRESI CFACE, PREVA, SURFA

IU2 FORMAT (15, F5. 1,2F! 5. 5)

CFACE IS +1.0 OR -1.0, ACCORDING AS PRESSURE IS ON TOP OR
BOTTOM SURFACE

CONTINUE
INITIALIZE THE LOAD MATRIX ELOAD ONE COLUMN AT EACH TIME

DO 4 IEVAB =1,NEVAB
ELOA D IEL~l, I EVAB) 0. 0
ENTER THE LOOPS OVER GAUSS POINTS FOR NUMERICAL INTEGRATION

DO 145 IGAUS =1,NGAUS
DO 14 5 JGAUJS = 1, NGAUS
EXISP =POSGP(IGAUS)

ETASP =POSGP(JGAUS)

WRITE(60,*)'EXISP,ETASP,POSGP(IGAUS),POSGP(JGAUS)'
WRITE(60,*)EXIOSP,ETASP,POSGP(IGAUS).POSGP(JGAUS)

CALL SFRl(SHiAPE, EXISP, ETASP)
IF(NBODY. EQ. 0) GO TO 141
ZETSP = -1.0
DO 140 1ILAYR =!, NLAYR
LPROP = MATNO(IELEI, ILAYR)
DZETA = PRCPS(LPROP,3)
ZETSP = ZETSP+DZETA/2. 0
READ(S) [3MATX', GMATX, DVOLU

CALCULATE THE CENTRIFUGAL, GRAVITATIONAL PRESSURE AND POINT LOADS

CENTRIFUGAL FORCE
IF(ANVEL.EQ.0 .0) GO TO 70
NPROP = 2
CALL FUNC(BMAT(, SHIAPE, THICK, NBORP, NNODE. ZETSP. MELEM. COORD, DICOS,

GASH =LtNODS, ZELEM, MPOIN, M3P015 GMATX)
GAS =PROPS(LPROP, 4)*ANVEL*ANVEL*DVOLU

DO 45 IS=1,2
STREN(IS) = GASH*WORMX(IS,1)

CONTINUE
STREN(3) = 0 0
DO 65 INODE = 1,NNODE
FIND THE POSITION OF THE V-i AND V-2 VECTORS
IPOIN = IASS(LNODS(IELEMINODE)l
JPOSI = (IPOIN-1)*3
DO 65 ISTRE =1,NSTRE
IEVAB = (INODE-1)*5+ISTRE
IF(ISTRE.GT.3) GO TO 50
ELOAD(CIELEM, IEVAB )ELOAD( IELEM, IEVAB3)+STREN( ISTRE)*SHAPE( 1, INODE)
GO TO 65

-0 JPOSI = JPOSI +1
GASH = SHAPE(1, INODE)*(THICK(IPOIN)/2. 0)*ZETSP
IF(ISTRE. NE. 5) GO TO 35
GASH = -GASH

DO 60 ILL= 1, 2
10 ELOAD(IELEM. IEVAB) = ELOAD(IELEM, IEVAB)+STREN(ILL)*

DICOS( ILL, JPOSI )*GASH
CONTINUEI CONTINUE
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GRAY I TY
GASH = PROPSfLPROP,4)*DVOLU
DO -75 IMt-,l,
STREN(IMM) =GRAVI(IMM)*GASH

DO 95 ItqODE=1. NNODE
IPOIN = IABS(LNODS(IELEM, INODE))
JPO3SI=( IPOIN-l )*3
DO 95 ISTRE =1, NSTRE
IEVAB=( INODE-l )*5-+ISTRE
IF(ISTRE. GT.3) Go r0 so
ELOAD (IELEM IE'AB )=ELOAD( IELEM. IEVAB)+STREN( ISTRE)*

SHAPE(i, INODE)
GO TO 95

30 JPOSI = JPOI-I+1
GASH = SHAPE(1, INODE)*(THICK(IPOIN)/2.0)*ZETSP
IF(ISTRE. NE. 5) GO TO 85
GASH = -GASH

DO 90 1VK= 1, 3
"o ELOAD(IELErM IEVAB)=ELOAD(IELEM. IEVAI3)+STREN(IKK)*

DICOS( IKK. JPOSI )*GASH
CONTINUE

ZETSP = ZETSP+DZ'ETA/,2. 0
.40 CONTINUE

CALCULATE THE NODAL LOADS DUE TO PRESSURE

I IF(NPRES. EQ. 0) GO TO 142
CALL PRES(EMATX, COORD, ELOAD. LNODS, POSGP. SHAPETHICK,

WE ICR IELEM, IGAUS, JGAUS, MELEM. MPGIN, NNODE1
COTIUENEVAB, KPRES, CFACEJ PREVA, SURFA, DICOS, M3POI)

2 4 CONTINUE

POINT LOADS
IF(NUCLO. EQ. 0) GO TO 150

* IS THE PRESENT ELEMENT A LOADED ELEMENT. IF IT IS
READ AND ACCUMULATE THE LOADS IN ELOAD
WRITE(60,*) 'NUCLO=', NUCLO

DO 120 1IGASP=1, NUCLO
READ( 15, 950) LPO IN, LDOFN, CARGA
WRITE (60. 960)LPOIN, LDOFN, CARGA
WRITE (6, 960)LPO IN, LDOFN, CARGA
WRITE(5,*) 'HERE ARE SOME VALUES READ'
WRI TE(5, 960)LPOIN, LDOFN, CARGA

IEVAB = (LPOIN-1)-*5+LDOFN
WRITE(60,* ) 'IEVAB,LDOFN', IEVAB.LDOFN

0 ELOAD(I IEEM, IEVAB )=ELOAD( IELEM, IEVAI3)+CARGA
L20 WRITE(60, *) 'ELOAD.. ',ELOAD(IELEM, IEVAB)

50 CONTINUE
0 WRITE(60,*'ELOAD,UELOADU,J)J=,IEVAB),I=I,NELEM)

RETURN
END

SUBROUTINE MATM
SUBROUTINE rATM(Nl,N2, N3, NOPN)

MATRIX MANIPULATIONS
NOPN - 1, TRANSPOSE-INVERT Ni INTO N2, DJACB = i/QVALU
NOPN = ,TASOEML. A(K,I)*B(K,J) - C(I#J)
NOPN = 3, TRUE MULTIPLY, A(I,K)*B(K,J) = C(I,J)
NOPN = 4, MATRIX (TRANSPOSED)*VECTOR
NOPN = 5, TRANSPOSE MATRIX Ni INTO N2
NOPN = 6, NORMALIZE Ni INTO N2, IN COLUMNS
NOPN = 7, Ni AND N2 OPEN SCISSORS-FAXHION TO BE ORTHOGONAL
NOPN = 8, TRANSFER MATRIX Ni INTO N2
NOPN = 9, MATRIX Ni*VECTOR N2 = VECTOR N3*1 COMMON WORMX (3, 24), OVALU. DJACOB
WR ITE (3,*)..........E N T E R I N G M A T M'
WRI TE(5, '. . . NOPN IN MATM'. NOPN

'12 FRA(l,3E14. 7)GO TO (1, 2,3, 4, 5,6, 7.e.9), NOPN
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DO 10 1 =1,3
J = 4 - I -K
Ml = NI + J
M2 = Ni + K
M3 = N2 + 1 -i
M4 = NI + I -1

WRITE(5,*) 'GVALU IN MATM FIRST BEFORE CALLING VECT'#GVALU
WRITE(5,*) .+.++++I,J,K,M,M2,M3,M4++++ ',I,J,KM1,M2,M3,M4
CALL VECT(MI,M2,M3,4)

WRITE(5,*)'&GIALUE ONCE'O, VALU
CALL VECT(M4, M3, 0, 1)
WRITE(5,*)'GVALU NEXT',GVALU
WRITE(5, )'QVALU IN MATM AFTER CALLING VECT'
WRITE(5, *' ! !!!QVGLU ! !',(VALU

IF (GVALU. NE. 0. 0) GO TO 22
WRITE (6, 21)

FORMAT(17H ZERO DETERMINANT)
STOP
EXECUTION IS TERMINATED WHEN THE DETERMINANT IS ZERO
GVALU =. 0/GVALU

CALL VECT(M3, M3, 0, 3)
K = 1 -1

RETURN
DO 11 I =1,3

Ni = Ni + I -I
DO 11 J =1,3
M2 = N2 + J -1
M3 = N3 + J -1
CALL VECT(M1,M2,0, 1)

WORMX(I, M3) = QVALU
RETURN

DO 13 1= 1,3
DO 13 K 1, 3
M2 = N2 + K -1
M3 = N3 + K -1
GASH = 0. 0
DO 12 L =1,3
Ml= Ni + L -1

GASH = GASH + WORMX(I,M1)*WORMX(L, M2)
WORMX(IM3) = GASH

RETURN
S DO 14 1 = 1,3

Ml = N1+I-I
CALL VECT(MIN2,0, I)
WORMX(I, N3) = QVALU

RETUR N
DO 15 1 =1,3

NII = Ni + I -1
N21 = N2 + 1 -I
DO 15 J =I,3
NIJ = Ni + J -1
N2J = N2 + J -1
GASH = WORMX(J, NilI)

WORMX(.J, N2I) = WORMX(I,NlJ)
WORMX(,J, N2J) = GASH

RETUR N:1 DO 16 I=1,3
11 = NI + I -1
12 = N2 + I -1

CALL VECT(I1, r2.0,2)
RETURN
CALL SINGOP(N1,2)

CALL SINGOP(N2,2)
CALL VECT(N1,N2,0, 1)
GASH = -QVALU/(1. O+SQRT( 1. 0-GVALU*GVALU))
DO 17 I =1,3
GISH - WORMX(I,Nt)
GOSH = WORMX(IN2)
WORMX(I, N1) = GISH+GASH*GOSH

WORMX(I,N2) = GOSH + GASH*GISH
RETURN

3 DO 18 J =1,3' NIJ = NI+J-1
N2J = N2 +J -1
DO 18 I =1,3

L8 WORMX(I,, 2J) = WORMX(I,NNIJ)
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RETURN
DO 20 1 =1, 3

GASH = 0. 0
DO 19 J1, 3
NlJ = Ni + J -1

i9 GASH = GASH + WORMX(I,N1J)*WORMX(J,N2)
2- WORMX(I,N3) = GASH

RETURN
END

SUB3ROUTINE MODAN
SUBROUTINE MODAN(AMATX, DMATT, NMATS. NPROP, PROPS, MMATS,

MAT ND,MELEMI MLAYRJ NELEM, NLAYR)

CACLULATES THE MATRIX OF ELASTICITY -D- AND THE MATRIX OF
ANISOTROPIC PARAMETERS -AMATX- FOR EACH MATERIAL

DIMENSION AMATX(9, MtATS),DMATT(5, 5,MMATS),PROPS(MMATSsNPROP),
,APARA(5. 5), TRANS(51 5), GASHM(5, 5), MATNO(MELEM, MLAYR),
COEFE(2)

DO 15 IMATS = 1, NMATS

SETS UP THE MATRIX OF THE ANISOTROPIC PARAMETERS
(JNIAX = PROPS(IMATS,6)
DO 5 I=1,9

AMAT X (I, I MATS) =0. 0
AMATX(1,IMATS) =1.0

WR ITE (5, *)'.......... PROPS(IMATS,12)=..........'. PROPS(IMATS,12)
AMATX (4, IMATS) = (UNIAX/PROPS(IMATS, 12))**2. 0
A3Z = (UNIAX/PROPS( IMATS, 13) )**2. 0
AMATX (6, IMATS) = (UNIAX/PROPS(IMATS, 14) )**2.0
AMATX (2, IMATS) = 2. 0*A3Z-0. 5*(1. 0+AMATX(4, IMATS)+AMATX(6, IMATS))
AMATX (7, IMATS) = (UNIAX/PROPS(IMATS, l5fl**2.0
AMATX (9, IMATS) =(UNIAX/PROPS(IMATS, 16))**2. 0

SETS UP THE ELASTICITY MATRIX -D-
GASH = 1.0 - PROPS(IMATS, 2)**2. 0*PROPS(IMATS,8)/PROPS(IMATS, 1)
DO 10 1 =1,5
DO 10 J=1,5

DMATT(I, J, IMATS) = 0. 0
DMATT(1, 1, IMATS) = PROPS(IMATS, 1)/GASH
DMATT (2, 2,IMATS) = PROPS(IMATS. 8)/GASH
DMATT(1, 2,IMATS) = PR0PS(IMATS,2)*DMATT(2,2, IMATS)
DMATT(2,1,IMATS) = DMATT(1,2,IMATS)
DMATT (3 3, IMATS) = PRIJPS( IMATS, 9)
DMATT(4,4, IMATS) = PR'OPS(IMATS, 10)
DMATT(5, 5, IMATS) = PROPS(IMATS, ii)

i CONTINUE

CALCULATE THE SHEAR CORRECTION FACTOR

IF (NMATS. N\E. 1) GO TO 25
DO020 1=1, 2

20 COEFECI) =5. 0/6.0
GO TO 27

2 DO 26 IELEM =1,NELEM
KOUNT =0
DO 26 ILAYR =2,NLAYR
IF(MATNO(18.EM, ILAYR). EQ.MATNO(IELEM, ILAYR-1))GO TO 26
KOUNT = KOUN~T * 1

LONTINUE
IF (KO UNT. EQ. 0) GO TO 19
CALL SHEARC(MATNO, MELEM, MLAYR, PROPS, MMATS, NPROP#

COEFE, NLAYR, DMATT)
DO 28 IMATS = 1,NMATS

DMATT(4. 4,IMATS) = DMATT(4,4. IMATS)*COEFE(l)
DMATT(5, 5, IMATS) = DMATT(5, 5, IMATS)*COEFE(2)

WRITE(6.900) (COEFE(I),I=1,2)UFORMAT(/' COEFE(l) =',E1S.4,5X,'CEE2=,l./
DO 80 IMATS = 1,NMATS
PRI PA AXRFEESTA OFYMTEIA OF GOE TOINIE WIH0H
PRIF A THES REFEENT AYTEMIA OF AXE OINIE WIH0H

THETA = PROPS(IMATS, 17)
IF(ABS(THETA). LT. 0. 001) GO To 80
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SETS UP TH-E TRANSFORMATION MATRIX -TRANS-
DO 30 1 =1,5
DO 30 J =1, 5

30 TRANS(I, J) = 0. 0
C = C OS (THETA)
S = SIN(THETA)
TRANS(l,l) = C*C
TRANS(1,2) = S*S
TRANS(25 1) = TRANS(1,2)
TRANS(2,2) = TRANS(l,l)
TRANS(1,3) = C*S
TRANS(3,1) = -2. 0*TRANS(1,3)
TRANS(2,3) = -TRANS(1,3)
TRANS(3,2) = -TRANS(3,1)
TRANS(3,3) = TRANS(l,l)-TRANS(lo2)
TRANS(4,4) = C
TRANS(4,5) =S
TRANS(5,4) = -S
TRANS(5,5) =C

CALCULATE THE PRODUCT OF D MATRIX BY T MATRIX
DO 35 1 =1,5
DO 35 J =1,5
GASHM(I,J) = 0.0
DO 35 K =1,5

35GASHM(IJ) = CASHM(I,J) +-DMATT(I,K,IMATS)* TRANS(KJ)

CALCULATED THE TRANSPOSED D MATRIX
DO 40 I =1,5
DO 40 J =1,5
DMATT(I,J,IMATS) = 0.0
DO 40 K =1,5

DMATT(I,J,IMATS) = DMATT(I,J, IMATS) +TRANS(K,I)*GASHM(KJ)
DO 45 1 =1,5
DO 45 J =1,5

.5 DMATT(J, I, IMATS) = DMATT(I,J,IMATS)

SET UP THE MATRIX OF THE ANISOTROPIC PARAMETERS FOR THE MATRIAL

DO 50 I=1,5
DO 50 J =1,5

APARA(I,.J) = 0.0
APARA(l,l) = AMATX(1,IMATS)
APARA(1,2) = AMATX(2,IMATS)
APARA(2,1) = APARA(1,2)
APARA(2,2) = AMATX(4,IMATS)
APARA(3,3) = AMATX(6,IMATS)
AMATX(4,4) = AMATX(7,IMATS)
AMATX(5,5) = AMATX(9,IMATS)

* SET UP THE NEW TRANSFORMATION MATRIX

TRANS(3,1) = -C*S
TRANS(2,3) = 2.0*TRANS(3,1)
TRANS(3,2) = -TRANS(3.1)
TRANS(1,3) = -TRANS(2.3)

CALCULATE THE PRODUCT OF A MATRIX BY T MATRIX
DO 55 I =1,5
DO 55 j =1,5
GASHM(I,J) =0.0
DO 55 K=1,5

GASHM(Ij) = GASHM(I.J)+APARA(I,K)*TRANS(K,J)

CALCULATE THE NEW ANISOTROPIC PARAMETERS
DO 60 1 =1,5
DO 60 J =1,5
APARA(I,J) =0.0
DO 60 K=1,5

APARA(I1 J) = APARA(I,J)+TRANS(K,I)*GASHM(KJ)
AMATX(1,IMATS) = APARA(1,1)
AMATX(2,IMATS) = APARA(1#2)
AMATX(3,IMATS) - APARA(1,3)
AMATX(4,IMATS) = APARA(2,2)
AMATX(5,IMATS) = APARA(2,3)
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AMATX(6.IMATS) = APARA(3,3)
AMATX(7,IMATS) = APARA(4,4)
AMATX(8),IMATS) = APARA(4,5)
AMATX(9,IMATS) = APARA(5,5)

CONTINUE
WRITE(5,*) .... .GETING OUT OF SUB MODAN........
RETURN
END

SUBROUTINE NODES
SUBROUTINE NODEX (COORD, LNODS, MELEM. MPOIN, NELEM, NNODE)

* THIS SUBROUTINE INTERPOLATES THE MID SIDE NODES OF STRAIGHT
SIDES OF TH ELEMENTS

DIMENSION COORD(MPOIN,a),LNODS(MELEM'9),ELCOR(8.8)

LOOP OVER EACH ELEMENT
NNOD1 = 7
DO 20 1INODE = 1, NNOD 1, 2

COMPUTE TH'E NODE NUMBER OF THE FIRST NODE

NODST = LNODS(IELEM, INODE)
IGASH = INODE*2
IF(IGASH. GT. 8) IGASH = 1

COMPUTE TI-E NODE NUMBER OF THE LAST NODE

NODFN = LNODS(IELEM, IGASH)
MIDPT =INODE + 1
COMPUTE TH-E NODE NUMBER OF THE INTERMEDIATE NODE

NODMD = LNODS(IELEMMIDPT)
TOTAL=ABS(COORD(NODMD, I) )+ABS(CiOORD(NOCDMD. 2) )+ABS(COORD(NODMD, 3))))

IF THE COEFFICIENTS OF THE INTERMEDIATE NODE ARE ALL ZERO
INTERPOLATE BY A STRAIGHT LINE

IF(TOTAL. GT. 0. 0) GO TO 20
KOUNT = 1

oCOORD'NOriDI KOUNr) = (COORD(NODST. KOUNT)+COORD(NODFN,KOUNT))/2. 0
KOUNT = KOUNiT +1
IF(KOUNT. LE. 8) GO TO 10
CONTINUE

IF(NNODE. EQ3.8) GO TO 60

SET UP THE CENTRAL POINT COORDINATES
NODCE = LNODS(IELEM,9)
DO 30 1INODES = 1, 8
NODEB = LNODS(IELEMI INODE)
DO 30 IDIME =1,8(
ELCOR(IDIIE, INODE) = COORD(NODEBIDIME)

DO 50 1ID IME = 1, 8
GENCO = 0. 0
DO 35 INODE = 1, 7,2
GENCO = GENCO + ELCOR(IDIME.INODE)

GENCO = GENCO*(-0. 5)
DO 40 1INODE =2,68,2

10 GENCO = GENCO +ELCOR(IDIMEINODE)
GENCO = GENCO * 0. 5

COORD(NODCEJ IDIME) = GENCO
CONTINUE

RETURN
END

SUBROUTINE OUTPUT
SUBROUTINE OUTPUT( IITER, MTOTG. MTOTV. MVFIX, NCHECK. NELEM, NQAUSI

NOFIX, NOUTP. NPOIN. NSTRE.
NYFIX. STRSG, TDIspI TREACI EPSTN. POSOP,
EFFST, MATNO. MMATS. PROPS, NPROP, MELEM. THICK#
MPOIN. LNODS, MLAYRD NLAYR)

DIMENSION NOFrx(MVFIX),NOUTP(2),STRSG(5,MTOTG),STRES(6).
TDISP(MTOTV)TREAC(MVFIX,5),EPSTN(MTOTQ),
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POSGP(5), SHAPE(3. 9), EFFST(MTOTG),
THICK(MPOIN), LNODS(MELEM, 9),
FORCE(S). MATNO(MELEM, MLAYR),
PROPS(MMATS, NPROP)

KOUTP = NOUTP(l)
IF(IITER.GT.1) KOUTP = NOUTP(2)
IF(IITER. EQ. 1. AND. NCHECK. EQ. 0) KOUTP =NOUTP(2)

OUTPUT DISPLACEMENTS
IF(KOUTP. LT. 1) GO TO 10
WRITE (6. 900)

) FORMAT(lH0,5X, 13HDISPLACEMENTS)
WRITE (6, 905)

"U5 FORMAT~lHO, 6X,4HNODE,4X,6HX-DISPSXs6HY-DISP,8X,6HZ-DISP,
DO 208X,6HAF-ROT, SX, 6H13T-ROT)
D20IPOIN =1,NPOIN

NGASH = IPOIN*5
NGISH = NGASH - 4

_0 WRITE(6.910) IPOIN,(TDISP(IGASH).IGASH =NGISH,NGASH)
?10 FORMAT(II0, 5E14. 6)

CONTINUE

OUTPUT REACTIONS
IF(KOUTP.LT.2) GO TO 30
WRITE (6, 920)

? FORMAT(IHO,5X,9HREACTIONS)
WRITE (6, 925)

25 FORMAT( iHO. 6X, 4HNODE, 4X, 6HX-REAC, K, 6HY-REAC. SX,6HZ-REAC,
8X,6HAF-MOM, BX,6HBT-MOM)

DO 40 IVFIX = 1, NVFIX
* WRITE(6,910) NOFIX(IVFIX), (TREAC(IVFIX,.IDOFN),IDOFN=1,5)

3~0 CONTINUE

OUTPUT STRESSES
IF(KOUTP.LT3) GO TO 120
WRITE (6, 927)

127 FORMAT(lHO. 5K. HSTRESSES)
WRITE (6, 926)

6 FORMAT(lH0,1K, 5HK.LAYR, 5K,6HXK-STR, K, 6HYY-STR. 8X,6HXY-STR,
* BKS, 6HXZ-STR,BK, 6HYZ -STR, 6K, lHEFF-STRESS, 3K,

KGAS =131EFF. FL. STRAIN)

DO 110 IELSE1 = 1,NELEM
KELGS = 0
WRITE (6, 940) IELEM

40 FORMAT(1HO,18H ELEMENT NO., =,15,/)
DO 105 IGAUS =1,NGAUS
DO 105 JGAUS =1,NGAUS
EXISP = POSGP(IGAUS)
ETASP = POSGP(JGAUS)
SET TO ZERO THE STRESS RESULTANT VECTOR
DO 70 JFORC =1, 8
FORCE(JFORC) =0.0
KGASP = 0
KELGS = KELGS + 1

WRITE (6, 945) KELGS
5 FORMAT(11H G. P. NO. =, 15)

CALL SFR1 (SHAPE, EXISP, ETASP)

COMPUTE GAUSS POINT THICKNESS

I THIGP = 0. 0
DO 65 INODE = 1, 8
IPOIN = IAIS(LNODS(IELEM,INODE))

ETSIP =:1 -IGP+SHAPE(1. INODE)*THICK(IPOIN)
DO 100 ILAYR =1,NLAYR
LPROP = MATNO(IELEM, ILAYR)
DZETA = PROPS(LPROP,3)
ZETSP =ZETSP+DZETA/2. 0
KGAUS = KGAUS + 1
KGASP = KGASP + 1

THE FIVE LOCAL STRESSES IN THE ORDER XX. VY. XV.XZ, YZ

DO 50 ISTRE 1I,NSTRE
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:0 STRES(ISTRE) = STRSG(ISTRE.KGAUS)
WRITE(6. 950) KGASP, (STRES(ISTRE). ISTRE1,oNSTRE),

EFFST (KGAUS), EPSTN (KGAUS)

SET UP THE STRESS RESULTANTS IN THE ORDER NX, NY, NXY, MX, MY. OX, GY

DO 75 ISTRE =1, 3
FORCE (ISTRE) =FORCEC ISTRE)+STRES( ISTRE)*THIGP/2. 0*DZETA

FORCE( ISTRE+3) = FORCE( ISTRE+3)-STRES( ISTRE)*THIGP*THIGP*
ZETSP*DZETA/4. 0

DO 80 ISTRE=4, S
FORCE (ISTRE+3) = FORCEC ISTRE+3)+STRES( ISTRE)*THIGP/2. 0*DZETA

FORMAT( IS. 2X, SE14. 6)
ZETSP = ZETSP*DZETA/2. 0

00 CONTINUE
WRITE(6, 960) FORCEWl,FORCE(4),FORCE(2),FORCE(5),FORCE(3),

FORCE(6), FORCE(7). FORCE(S)
FORMAT(/p22I STRESS RESULTANTS = 68HN-XX =.E12.5.SX,
* 6HM-XX =, E12. 5/22X,6HN-YY -',E12. 5. X#6HM-YY
* E12.5/22X,6HN-YY =,E12.5,6HM-XY =,El2.5/,

22X.6HG-XZ =,El2.5,5X,6H0-YZ =,E12.5)
CONTINUE

.10 CONTINUE

.20 CONTINUE
RETURN
END

SUBROUTINE PRES
SUBROUTINE PRES(I3MATX, COORD. ELOAD, LNODS, POSGP, SHAPE, THICK.

WEIGP, IELEM, IGAUS, JGAUS, MELEM, MPOIN. NNODE,
NEVAB, KPRES, CFACE, PREVA, SURFA, DICOS, M3POI)

THIS SUBROUJTINE EVALUATES THE NODAL LOADS DUE TO PRESSURE

COMMON WORMX(3, 24), QVALU, DJACB
DIMENSION BMATX(5, 45),COORD(MPOINB),ELOAD(MELEM,NEVAB)I

LNODS(MELEM, 9), POSGP(5), PREMX(2. 9), SHAPE(3, 9),
THICf'UMPOIN), WEIGP (5), DICOS(3, M3POI), GMATX (2, 45)

ZETA = CFACE
NBORP = 2
CALL FUNG (BMATX. SHAPE, THICK, NBORPI NNODE5 ZETA. MELEM,

COORD. DICOS, LNODSI IELEM, MPOIN. M3POI. GMATX)

EVALUATE THE PRESSURE AT SAMPLING POINTS KPRES = 0,1 OR 2
ACCORDING AS PRESSURE IS U. D,HYDROSTATICOR SPECIFIED AS NODAL
COORDINATES

IF(KPRES. EQ. 0) GO TO 20
I F(KP RES. EQ. 2) GO TO 10
WORMX(3,1) = WORMX(3,1) - SURFA
PRESS = PREVA*WORMX(3,1)
IF(PRESS. GE. 0. 0) GO TO 25
PRESS = 0. 0
GO TO 25

.0 PREVA = 0. 0
DO 15 INODE =1. 8
NGASH = IABS (LNODS (IELEI, INODE))

SET UP ARRARY OF NODAL PRESSURE; ROW 1 ROP, ROW 2 BOTTOM

PREMX(1,INODE) = COORD(NGASH,4)
PREMX(2,INODE) = COORD(NGASH,8)
GISH = ((1.0*ZETA)*PREMX(1, INODE)+(1 O-ZETA)*PREMX(2, INODE))/2..O

S PREVA = PREVA*GISH*SHAPE(1, INODE)
21 PRESS = PREVA

GMULT = WEIGP (IGAUS)*WEIGP (JGAUS)*CFACE*PRESS

CALCULATE CONSISTENT NODAL LOADS

* DO 45 INODE =1,NNODE
* IPOIN = IABS(LNODS(IELEMINODE))

O VALU - -GrVLT*SHAPE(1, INODE)*DJACB
CALL VECT(7, 21, 0,3)
DO 30 1 =1.3
IPOSI = (INODE-1)*5+I

3 ELOAD(IELEM. IPOSI)=ELOAD(IELEM. IPOSI)+WORMX(I,21)
GVALU - ZETA*THICK(IPOIN)/2.0
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CALL SINGOP(21, 1)
NPOSI = (IPOIN-1)*3
DO 40 1 =1,2
~JPOSI = (IN4ODE-1)*5+(I+3)
NPOS I =NPOS1+ 1
DO 32 K =1,3
WORMX(K,24) = DICOS(K,NPOSI)

C ALL VEC T(21, 24, 0, 1)
IF(I. EQ. 2) GO TO 35
QVALU = -QVALU
ELOAD(IELEMJPOSI) = ELOAD(IELEM,JPOSI) O VALU

4 CONTINUE
4.. CONTINUE

RETURN
END

SUBROUTINE RESTR
SUBROUTINE RESTR(ASDIS, EFFST, ELOAD, LNODS,

MATNO, MELEM, MMATS, MPOIN, MTOTG, MTOTV,
NDOFN, NELEM. NEVAB, NGAUSJ NNODE,
NPROP, NSTREJ POSGP, PROPS, STRSG,
TDISP, WEIGP, EPSTN, KUNLO, AMATX, DMATT,
THICK, MLAYRI NLAYR, LARGE)

THIS SUBROUTINE REDUCES THE STRESSES TO THE YIELD SURFACE AND
EVALUATES THE EQUIVALENT NODAL FORCES

DIMENSION ASDIS(MTOTV),AVECT(5),BMATX(5, 45),
DMATT(5, 5, MMATS), DVECT(5), EFFST(MTOTG). ELDIS(45)s
ELOAD(MELEM, NEVAB), GVECT(5), LNODS(MELEM. 9).
MATNO (MELEM, MLAYR). POSGP (5), PROPS (MMATS, NPROP),
DESIG(5),SIGMA(5),SGTOT(5),ETDIS(45),
STRES( 5), EPSTN(MTOTG), TDISP(MTOTV), THICK(MPOIN),
STRSG(5, MTOTG), WEIGP(5),
AMATX(9, MMATS), GMATX(2, 45)

REWIND 8
DO 5 IELEM = 1,NELEM
DO 5 IEVAB = 1,NEVAD
ELOAD(IELEM.IEVAB) =0.0

KUNLO = 0
KGAUS = 0

WRITE(5,*)'STARTS PROCESS IN RESTR'
LOOP OVER EACH ELEMENT

DO 210 IELEI = 1,NELEM

IDENTIFY THE DISPLACEMENTS OF THE ELEMENT NODAL POINTS

,JPasI = 0
DO 10 INODE = 1,NNODE
LNODE = IABS(LNODS(IELEM,INODE))
NPOSN = (LNODE-1)*NDOFN

DO 10 IDO0FN =1,NDOFN
NPOSN = I\FOSN + 1

JPOSI = JPOSI + 1
ELDIS(JPOSI) = ASDIS(NPOSN)
ETDIS(JPOSI) = TDISP(NPOSN)

10 CONTINUE
KELGS = 0

ENTER LOOPS OVER EACH SAMPLING POINTS

WRITE(6, *)'
WRITE(6,*)' S TR E SS O UT PU T'
WRITE(6. *)'

WRITE(6,*)' DOF', ' SIOX '~'SIGY '' SIQZ
11, 0 TOU XY ', 0 TOUYZ

DO 20 5 1 GAU = 1, NGAUS
DO 205 JGAUS = 1,NGAUS
DO 200 ILAYR = 1,NLAYR
LPROP = MATNO(IELEMILAYR)
UNIAX - PROPS(LPROP,6)
HARDS - PROPS(LPROP,7)
KGAUS - KGAUS + 1
KELGS = KELGS +1
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EPSTN(KGAUS) = ABS(EPSTN(KGAUS))
READ(S8) J3MATXI GMATX, DVOLU

CALL SUBROUTINE WHICH SETS UP -BMATX- TAKING INTO ACCOUNT
THE GEOMETRIC NON-LINEARITY

IF(LARGE.EQ. 1) CALL LDISP(BMATX1 GMATXI ETDIS, NEVAB)

NOW PROCEED TO CALCULATE STRESSES FROM STRESS = DMATX*BMATX*ELDIS
FIRST STORE IN GASH VECTOR GYECT THE PRODUCT BMATX*ELDIS

DO 30 IDOFN =1,NDOFN
GASH = 0. 0
DO 25 IEVAS =1,NEVAS

-5GASH = GASH-N3IATX(IDOFN, IEVAB)*ELDIS(IEVAB)
30 GVECT(IDOFN) = GASH

CALCULATE THE FIVE LOCAL STRESSES IN THE ORDER XXYY#XYtXZJYZ

DO 50 ISTRE = 1, NSTRE
GASH = 0. 0
DO 45 JSTRE = 1, NSTRE
GASH = GASH + DMATT(ISTRE,JSTRE,LPROP)*GVECT(JSTRE)
STRES(ISTRE) = GASH
FORMAT(/lX 1 3, 1X, 5E14. 7)

WRITE(61 13) ISTRE,STRES(1),STRES(2),STRES(3),STRES(4),STRES(5)

200 CONTINUE
;05 CONTINUE

CONTINUE
WRITE(5,*)'***IN RESTR COMES UP TO REDUCE STRESSES'
RETURN

* GO TO 11101
REDUCE STRESSES TO THE YIELD SURFACE FOR YIELDED GAUSS POINTS

_,02 PREYS = UNIAX + EPSTN(KGAUS)*HARDS
DO 150 ISTR1 = 1,NSTRE
DESIG(ISTR1) =STRES(ISTR1)

) SIGMA(ISTR1) = STRSG(ISTRI,KGAUS)+STRES(ISTRI)
CALL INVAR(AMATX, SIGMA, LPROP. MMATS, YIELD)
ESPRE = EFFST(KGAUS) - PREYS

IF(ESPRE.GE.0) GO TO 55
ESCLJR = YIELD - PREYS,

IF(ESCUR.LE.O.0) GO TO 60
RFACT = ESCUR/(YIELD-EFFST(KGAUS))
GO TO 70

c; ESCUR = YIELD - EFFST(KGAUS)
IF(ESCUR.LE.O.0) GO TO 60
RFACT = 1.0

10 MSTEP =ESCUR*63.0/UNIAX + 1.0
ASTEP = MSTEP
REDUC = 1. 0-RFACT
DO 80 ISTR1 = 1 NSTRE
SGTOT (ISTR1)=STRSG( ISTR1, KGAUS)+REDUC*STRES( ISTRi)

10 STRES(ISTRI) = RFACT*STRES(ISTR1)/ASTEP
DO 90 ISTEP =1,MSTEP
CALL IN4VAR(AMATX. SGTOTD LPROP, MMATS. YIELD)
CALL FLOWS(ABETA. AVECT, DVECTU LPROP. MMATS1 NPROP. PROPS,

SOTOT, AMATX, DMATT)
AGASH = 0. 0
DO 100 ISTRi = 1, NSTRE

.) AGASH = AGASH + AVECT(ISTR1)*STRES(ISTRI)
DLAMD = AGASH *ABETA
IF(DLAMD. LT.0. 0) DLAMD = 0. 0
BGASH = 0. 0
DO 110 ISTRI =1, NSTRE
BOASH = BGASH +AVECT(ISTR1)*SGTOT(ISTR1)

10 SGTOT(ISTRI)-SGTOT(ISTR)+STRES(ISTRI)-DLAID*DVECTCISTR1)
EPSTN (KGAUS)=EPSTN ( KAUS )+DLAMD*BGASH/YIELD

CONTINUE
CALL INVAR (AMATX. SGTO3T.LPROP, MMATS. YIELD)
CURYS - UNIAX4EPSTN(KGAUS)*HARDS
BRING -1.0
IF(YIELD. CT. CURYS) BRING = CURYS/VIELD
DO 130 ISTRI - 1, NSTRE.1 STRSG(ISTR1,KGAUS) = BRING*SGTOT(ISTR1)
EFFST(KGAUS) =BRING*YIELD



Page 29

ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD
90 CONTINUE

GO TO 190
DO 180 ISTR1 = 1,NSTRE

1-80 STRSG(ISTRIKGAUS) = STRSG(ISTR1,KGAUS)+DESIG(ISTRI)
EFFST(KGAUS) = YIELD
I F(EP STN (KGAUS). EQ.0. 0. OR. ESCUR. EQ. 0. 0) GO TO 190
EPSTN(MKGAUS) = -EPSTN(K.GAUS)
KUNLO = KUlNLO + 1

C70 CONTINUE
CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE
ELEMENT NODES

MGASH = 0
DO 140 INODE = 1,NNODE
DO 140 IDOFN = 1,NDOFN
MGASH = MGASH + I
DO 140 ISTRE = 1,NSTRE

J.40 ELOAD( IE1.EM, MGASH) = ELOAD( IELEM, MGASH)+BMATX( ISTRE. MGASH)*

00 STRSO(ISTRE, KOAUS)*DVOLU

205 C ONT INLE
RETURN
END

SUBROUTINE SFRI,
SUBROUTINE SFR I(W,G, H)

PARABOLIC SHAPE FUNCTIONS AND THEIR FIRST DERIVATIVES FOR
8-NODE ELEMIENT PLUS THE CENTRAL HIERARCHIAL FUNCTION
G AND H DENJOTE THE XI AND ETA VALUES AT THE POINT CONSIDERED

DIMENSION W(3,9)
GG = G*G
GH = G*H
HH = H*H
GGH =OG*H
GHH = G*HH
G2 =G2
H2 = H*2.
GH2 = H2
W(1, 1) = (-1. +GH+GG+HH-GGH-OHH)/4.
W(1,2) = (1. -H-004-OGH)/2.
W(1,3) = (l. -GH+GG+HH-GGH+GHH)/4.
W(1,4) = (1. +G-HH-GHH)/2.
W(1, 5) = (-1. +GH+GG+HH+GGH+GHH)/4.
W(1,6) = (1-+H-GG-GGH)/2.
W(1,7) = (-1. -GH+GG+HH+GGH-GHH)/4.
W(1,6) = (1. -G-HH+GHH)12.
W(1,9) = 1.0-GG-HH+GG*HH
W(2,1) = (FI+G-2-GH2-HH)/4.
W(2,2) = -0-4-H
W(2,3) = (-H+G2-GH2+HH)/4.
W(2,4) = ( 1. -HH) /2.
W(2,5) = (H+G2+GH2+HH)/4.
W(2,6) = -G-GH
W(2,7) = (-H+G2+GH2-HH)/4.
W(2,8) =(-l+HH)/2.
W(2,9) = -G2*(1.0-HH)
W(3,1) = (G+H2-GO-GH2)/4.
W(3,2) = (-1. +GG) /2.
W(3,3) = (-G+H2-GG+GH2)/4.
W(34) -=HG

W(,5 = (G+H2+GG+GH2)/4.
W(3,7) = (-G+H2+GG-GH2)/4.
W(3,8) = -+G-H

RETURN
END

SURUTN SINGOP
U SUBROUTINE SINGOP(N1. NOPN)
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VECTORS OR MATRIX MANIPULATIONS INCLUDING SINGLE SPACE
NOPN = 1, MULT
NOPN = 2, NORMALISE VECTOR
NOPN = 3, TRANSPOSE MATRIX
NOPN = 4, FIND VECTOR SQUARED
NOPN = 5, FORM UNIT DIAGONAL MATRIX IN Ni

COMMON WORMiX(3, 24), QVALU, DJACB
WRITE(40,*)'ENTERS SIGNOP AND RECEIVES THE FOLLOWING
Nl 1 NOPNFROM VECT'

WRITE(40,*) 'Nl,NOPN=',Nl,NOPN
GO TO (1,2,3,45 5)1 NOPN

* CALL VECT(NINI,0,3)
RETURN

2 CALL VECT(Nl,N1,0.2)
RETURN

3 WRITE(40,*)'NOPN = ',NOPN, 'Nl=',N1
CALL MATM(N1, N1, 0, 5)

RETURN
* CALL VECT(Nl, Nl,0,l1)

RETURN
N2= N + 2

DO 12 J =N1,N2
DO 11 I =1,3

*WOR MX (I, J) 0. 0
II = II+l

.2WORMX (I11,J) 1.0
RETURN
END

SUBROUTINE STIFF(EPSTN, ESTIF, KITER, LNODSI MATNO,
MELEM, MEVAB, MMATS, MPO IN, MTOTG, NDOFN,
NELEM, NEVA3,NGAUS, NNODE. NPROP,
NSTRE, POSGP, PROPS, STRSG1 WEIGP, AMATX,
DMATT, MLAYR, NLAVRD THICK,
TDISP, MTOTV, LARGE)

THIS SUBROUTINE EVALUATES THE STIFFNESS MATRIX FOR EACH
ELEMENT IN TURN

DIMENSION BtIATX(5,45),DBMAT(5,45),DMATX(5,5)i
EST IF (MEVA3, MEVAB), LNODS (MELEM, 9), MATNO (MELEM1 MLAYR),
POSGP (5), PROPS (MMATS, NPROP), AMATX (9, MMATS),
STRES(5),THICK(MPOIN),WEIGP(5),EPSTN(MTOTG).
STRSG(5, MTOTG), AVECT(5), DVECT(5),DM'ATT(5, 5,MMATS),
TDISP(MTOTV),ETDIS(45),GMATX(2,45)

REWIND 1
REWIND 8
KGAUS =0

LOOP OVER EACH ELEMENT

DO 110 IELEM = 1,NELEM
SET UP THE ELEMENT DISPLACEMENT VECTOR -ETDIS-
JPOSI = 0
DO 10 INODE = I,NNODE
LNODE = IAIS(LNODS(IELEM,INODE))
NPOSN = (LNODE-1)*NDOFN
DO 10 IDOFN = 1,NDOFN
NPOSN = NPOSN + 1
JPOSI = JPOSI + =I TIPNON

ETDIS(JPOSI) =TIPNON

DO 20 IEVAB -1,NEVAB
DO 20 JEVAB - 1,NEVAB21 ESTIF(IEVAB.JEVA3) = 0.0
KGASP =0
INITIALIZE THE ELEMENT STIFFNESS MATRIX

DO 105 IGAUS = ,GU
DO 10 5 JCAUS = 1, NGAUS
DO 100 ILAYR = 1,NLAYR; LPROP - MATNO(IELEM, ILAYR)
KGASP - KGASP -1
KGAUS = KQAUS + 1
READ(SB) BMATX, GMATX, DVOLU
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CALL SUBROUTINE WHICH SETS UP -BMATX-- TAKING INTO ACCOUNT
THE LARGE DISPLACEMENTS
I F(LA ROE. EQ. 1. AND. K ITER. GT. 2)
CALL LDISP(BMATX, GMATX, ETDIS# NEVA3)
IF(KITER.EQ.2)GO TO 80
IF(EPSTN(KGAUS).LE.0. 0) GO TO 80
CALCULATE THE ELASTO-PLASTIC -D- MATRIX

DO 30 ISTRE 1, lNSTRE
30 STRES(ISTRE) =STRSG(ISTREKGAUS)

CALL FLOWS(ABETA, AVECT, DVECTa LPROP, MMATS, NPROP5 PROPSO
STRES, AMATX, DMATT)

DO 70 ISTRE = 1,NSTRE
DO 70 JSTRE = 1,NSTRE

70 DMATX( ISTRE, JSTRE) = DMATT( ISTRE, JSTRE, LPROP)-Ai3ETA*
DVECT( ISTRE)*DVECT(JSTRE)

WRITE(30,*) ((DMATX(IST,JST)5 JST=1,NSTRE),IST=1,NSTRE)
WRITE(30,*) 'VALUE OF NSTRE='1 NSTRE

CALCULATE THE PRODUCT OF D MATRIX AND B3 MATRIX

DO 35 IS-RE = 1,NSTRE
DO 35 IEVAB = 1,NEVA3
DBMAT(ISTRE, IEVAB) = 0.0
DO 35 JSTRE = 1,NSTRE
DSMAT (ISTRE, IEVAB) = DI3MAT( ISTRE. IEVAB)+DMATX( ISTRE. JSTRE)*

BMATX (JSTRE, IEVAB)
35 CONTINUE

GO TO 90
3 CONTINUE

DO 85 ISTRE = 1,. NSTRE
DO 85 IEVAB = 1, NEVAB
DBMAT(ISTRE,IEVAB) = 0.0
DO 85 JSTRE = 1, NSTRE

DL3MAT(ISTRE, IEVAB) = DBMAT(ISTRE, IEVAB).
DMATT( ISTRE, JSTRE, LPROP)*I3MATX(JSTRE, IEVAB)

WRITING BGMAT FOR TEST ON UNIT 30
WR ITE (30,* BIGMAT'

:666 FORMAT(1X,5El4.7/lX,5El4.7/1X,5El4.7/lX,5El4.7/lX,5El4.7
/iX,5El4.7,/lX,5El4.7,/lXsSEl4.7/lX,5El4.7)

WRITE D MATIRX ONTO 30 FOR CHECK ONLY
WR ITE (30, *) 'DMATT'
WRITE(30,777) ((DMATT(I,J 1 1)1 J=1,5),I=1.5)

7 77 FORMAT(lX, 5E14. 7)

CALCULATE THE ELEMENT STIFFNESS

J0 DO 40 IEVAB =1,NEVAB
DO 40 JEVAB = IEVAB,NEVAB
DO 40 ISTRE = 1, NSTRE

L ESTIF(IEVAB31 JEVA3) = ESTIF(IEVAI3.JEVAB)+BMATX(ISTRE IEVAB)*
DBMAT( ISTRE, JEVAB)*DVOLU

CALL SUB3ROUTINE WHICH CALCULATES THE GEOMETRIC MATRIX -GEMTX-
WRITE( 5,*) '********CALLIN GEOME*******'

CALL GEOME(ESTIFI GMATX, STRSGI MEVABI NEVAB, MTOTG, KGAUS, DVOLU)

WRITE(5,*)'**********COMING OUT OF GEOME*****'
q CONTINUE

CONTINUE
CONTINUE

TF CONTRACT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX
DO 60 IEVAB = 1, NEVAB
DO 60 JEVAB = 1 #NEVAB

ESTIF(JEVA3, IEVAB) = ESTIF(IEVAB,JEVAB)

WR ITE (20, *) 'ESTIF(22,22',ESTIF(22,22)
WRITE(20,*) 'ESTIF(27,27',ESTIF(27,27)

STORE THE STIFFNESS MATRIX FOR EACH ELEMENT ON DISC FILE

WRITE(1) ESTIF
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10 CONTINUE
. DO 771 1.1W = 1,2

WRITE(30,*) 'ELEMENT NO.-- ',ILM,MEVAB
WRITE(30,*) (<ESTIF(I,J),J=l,45),I=1,45)

:771 CONTINUE
RETURN
END

SUBROUTINE VECT
SUBROUTINE VECT(NI, N2, N3, NOPN)

- **** ********k**********************************************

- VECTOR MANIPULATIONS
NQPN = 1,QVALU BECOMES SCALAR PRODUCT OF COL. NI AND N2

- NOPN = 2, NORMALISE NI INTO N2
- NOPN = 3, MULTIPLY Ni BY OVALU, PLACE IN N2
- NOPN = 4, N3 BECOMES VECTOR PRODUCT OF NI AND N2

NOPN = 5, N3 BECOMES VECTOR NI + VECTOR N2*QVALU

COMMON WORMiX (3, -4), QVALU, DJACOB
- WRITE(5,* ......... ENTERS VECT ........
- WRI TE(5,* 'NI, N2, N3, NOPN', N1, N2, N3, NOPN

DO 1101 I =1,Nl
WR ITE (5, -;) ". ..... WORMX(INI)... ",WO)RMX(I,N1)

'101 CONTINUE
Il = N1
GO TO (1,2, 3, 4, 5),NOPN

SIl = N2SWR ITE (5, *) "------ NOPN:, II,NI,N2", NOPN, II,NI,N2
- WRITE(5,*) 'WORMX"X... ",WORMX(1,NI),WORMX(2,NI),WORMX(3,Nl)

WRITE(5,*.) 'WORMX"IS.. I, II',WORMX(1, I1),WORMX(2, II),WORMX(3,I1l)
- GVALU = 0.0

DO 10 I =i,3
.' QVALU = QVALU + WORMX(I,N1)*WORMX(I, II)

GO TO (15, 16),NOPN
IF(QVALU. NE. 0. 0)GO TO 18

WRITE(6, 17)
17 FORMAT(12H NULL VECTOR)

STOP
" EXECUTINON IS TERMINATED WHEN A VECTOR IS NULL

QVALU = 1.0/SQRT(QVALU)
, DO 12 1 =1,3
- WORMX(I, N) = WORMX(I,N)*QVALU

RETUR N
K =3

DO 13 I =1,3
J = 6--I-K

WRITE(5,*)' I,J,K... ',I,J,K,N1,N2,N3
WORMX(I,N3) = WORMX(J,Nl)*WORMX(K,N2)-WORMX(K,N1)*WORMX(J,N2)

WRITE(5,*)&&&&&& WORMX(I,N3) IN VECT &&&&',WORMX(I,N3)
13 K = I

RETUR N
-DO 14 1 =1, 3

WORMX(IN3) = WORMX(I,N1) + QVALU*WORMX(I,N2)
15 RETURN

END

SUBROUTINE WORKS
SUBROUTINE WORKS(COORD, DICOS, LNODS, THICK, MELEM, MPOIN, NPOIN, M3POI)

THIS SUBROUTINE SETS UP THE THICKNESS AND ORTHOGONAL
* SYSTEM OF AXES AT EACH NODAL POINT

DIMENSION COORD(MPOIN,8),LNODS(MELEM,9),THICK(MPOIN),
i CODICOS(3, M3POI)

COMMON WORMX(3,24),QVALU,DJACB

TOP AND BOTTOM CO-ORDINATES ARE SET UP AT COLUMNS -1- AND -2-

I DO 30 IPOIN = 1,NPOIN
WRITE(5,5101) IPOIN

311 FORMAT(/'+', 12)
DO 10 I =1,3
WORMX(I,1) = COORD(IPOINI)

Ii WORMX(I,2) = COORD(IPOIN I+4)
NGASH = 3
NGISH = NGASH + 2
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OVALU = 10
VECTOR V-3 IN COLUMN NGISH

CALL VECT(1, 2,NGISH. 5)

SETS QVALU EQUAL rO SCALAR PRODUCT OF THE VECTOR (V-3)*(V-3)

WRITE(5,*)'START ENTERING SIGNOP...............
CALL SINGOP(NGISH, 4)
THICK(IPOIN) = SGRT(QVALU)
CREATES AND NORMALISES AT EACH NODE THE VECTORS V-i5 V-2 AND V-3

CALL FRAME (NGASH5 NGISH,O0, 1)
DO 354 I =1,3

354 CONTINUE

SET UP THE DIRECTION COSINE MATRIX OF THE LOCAL AXES AT EACH
POINT IN ORDER V-1,V-2,V-3

NPOSI = (IPOIN-1)*3
DO 20 I=1,2
DO 20 J =1, 3
~JPOSI = NPOSI + I

-_o DICOS(JJPOSI) WORMX(J, 1+2)
3Li CONTINUE

RETUR N
END

SUBROUTINE RESTAR
SUBROUTINE RESTAR(EFFST, ELOAD, EPSTN1 MELEM, MEVAB, MTOTG,

MTOTV, MVFIX, TDISP, TLOAD, TREAC, STRSG,
TFACT, KINGS)

THIS SU3ROUTINE RECORDS ONTO TAPE 12 THE DATA NEEEDED TO
RESTART TH-E PROBLEM

DIMENSION EFFST(MTOTV), ELOAD(MELEM, MEVAB), EPSTN(MTOTG),
TLISP(MFOTV),TLOAD(MELEMMEVAB),TREAC(MVFIX,5),
STRSG(5, MTOTG)

REWIND 12
WRlTE(12) KINGS, TFACT, EFFS9TDELOAD, EPSTN
WRITE (12) TDISP, TLOAD, TREAC, STRSG
RETUR N
END

SUBROUTINE ZERO
SUBROUTINE ZERO(EFFST, ELOAD, EPSTN, MELEMS MEVAD, KINGS,

MTOTG, MTOTVJ NDOFN, NELEM, NEVAB, NREST,
NSTRE, NTOTG, NTOTV, NVFIX, MVFIX, STRSG,
TDISP, TFACT, TLOAD, TREAC)

THIS SUBROUTINE INITIALISES VARIOUS ARRAYS TO ZERO

DIMENSION a.OAD(MELEM,MEVAB), STRSG(5, MTOTG)5 TDISP(MTOTV),
TLOAD(MELEMI MEVAB), TREAC(MVFIX, 5), EPSTN(MTOTG),
EFFST(MTOTG)

WRITE(50,*)'VALUE OF NEVAB WITHIN ZERO='sNEVAB
I F(NR ES T.EQ. 1) GO TO 70
KINGS = 0
TFACT = 0. 0
DO 30 IELEM = 1, NELEM
DO 30 IEVAB =1, NEVAB
ELOAD (I ELEM, IEVAB ) = 0. 0

-31 TLO AD (I ELEM, IEVAB) = 0.0
DO 40 ITOTV = 1, NTOTV

TD ISP ( ITOTV) = 0. 0
DO 50 IVFIX = 1,NVFIX
DO 50 IDOFN = 1,NDOFN

TREAC (IVFIX, IDOFN) =0. 0
DO 60 ITOTG = 1,NTOTG
EPSTN (I TOTG) = 0. 0
EFFST (I TOTG) = 0. 0
DO 60 1ISTR I = 1, NSTRE'ISTRSG ( ISTR 1, 1TOTG) =0. 0
GO TO 80

70 REWIND 12
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READ( 12) KIN4GS, TREACT, EFFSTI ELOAD, EPSTN
READ( 12) TDISP, TLOAD, TREAC, STRSG

CONTINUE
RETURN
END

SUBROUTINE SHEARC
SUBROUTINE SHEARC (MATNO, MELEM, MLAYRI PROPS, MMATS, NPROP,

COEFE. NLAYR, DMATT)

CALCULATES THE SHEAR CORRECTION FACTOR FOR THE CASE OF
LAMINATED COMPOSITE STRUCTURES

DIMENSION RFACT(2),TRLOW2',UPTER(2),GBARF(2)MATNO(MELEMMLAYR),
COEFE(2),ZETA1(2),ZETA2(2),DINDX(2),PRDPS(MMATS,NPROP),
GINDX(2), DIFF2(2), DIFF3(2), SUMLA(2), DMATT(51 ,5MPIATS),
DIFF5(2)

INITIALISE SOME ARRAYSC
D0 10 I = 1.2

SUMLA(I) = 0.0
RFACT(I) = 0.0
GBARF(I) = 0.0
UPTER(I) = 0.0
TRLOW(I) = 0.0

COEFE(I) = 0. 0

CALCULATE THE POSITION OF THE NEUTRAL AXIS

DSUMM = 0. 0
DO 15 ILAYR = 1,NLAYR
LPROP = MATNO(1, ILAYR)
DZETA = PROPS(LPROP,3)
ZHEIG = DSUiIM+DZETA/2.
DO 14 I1 1,2
DINDX(I) =DMATT(I,I,LPROP)
UPTER (I) =UPTER(I)+DINDX(I)*ZHEIG*DZETA

TRLOW( I) = TRLOW( I)+DINDX( I)*DZETA
DSUMM = DSUMM+DZETA

DU) 16 I =1,2
-6 ZETA2(I) = -UPTERI/TRLOW(I

CALCULATE THE SHEAR CORRECTION FACTOR
DO 20 ILAYR = 1,NLAYR
LPROP = MATNO(1,ILAYR)
DIFF1 = PROPS(LPROP,3)
INDEX = 10
DO 20 I =1,2
ZETA1(I) = 'ETA2(I)
ZETA2(I) = ZETAl(I)*DlFFl
DIFF2(1) = ZETA2(I)**2-ZETA1(I)**2
DIFF3(I) = ZETA2(I)**3-ZETA1(I)**3
DIFF5(I) = ZETA2(I)**5-ZETA1(I)**5

DINDX(I) = DMATT(I, I,LPROP)
GINDXiI) = PROPS(LPROP, INDEX)

RFACT(I) = RFACT(I) +- DINbX(I)*DIFF3(I)/3.
GBARF(I) = GBARF(I)+GINDX(I)*DIFF1/2.
TERMI = SUILA(I)*SUMLA(I)*DIFF1
TERM2 = DIIX(I)*(ZETA1(I)**4)*DIFF1/4.
TERM3 = DIiVX(I)*DIFF5(I)/20.
TERM4 = -DINDX(1**ZETA1I)ZETA(I)*DIFF3(1)/6.
TERM5 = SUMLA( I)*ZETA1 (I )*ZETA1 (I )*DIFF1
TERM6 = -SU' LA(I)*DIFF3(I)/3.
COEFE(I) = COEFE(I)-.(TERM+DINDX(I)*(TERM2+

TERM3+TERM4+TERM5+TERM6) ) /INDX (I)
INDEX = INDEX + 1
SUMLA(I) = SUMLA(II-DINDX(I)*DIFF2(1)/2.

2 CONTINUE
DO 30 I =1.2

30 COEFE(I) = RFACT(I)*RFACT(I)/(2.*GBARF(I)*COEFE(I))
RETURN
END

MAIN MASTER OR CONTROLLING SEGMENT
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PROGRAM PLr-HEL_ .....
PROGRAM PLSH-ELL

(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT,
TAPE1, TAPE2-, TAPE4, TAPE7, TAPES, TAPE12)

PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF ANISOTROPIC SHELL
STRUCTURES USING QUADRATIC DEGENERATE SHELL ELEMENTS(8-NODE
HETEROSIS AND 9-NODE) AND A LAYERED APPROACHs ACCOUNTING FOR
LARGE DISPLACEMENTS AND SELECTIVE INTEGRATION(TRANSVERSE
SHEAR TERMS). THE ANISOTROPIC PARAMETERS REMAIN CONSTANT
DURING THE FLOW. RESTART FACILITIES INCLUDED

DIMENSION ASDIS(5O0),COORDC10O,8),EL0AD(20,45),EQRHS(10),
EQ3UAT(75, 10), EFFST( 1800), EPSTN( 1800), ESTIF(455 45),
FIXED(500),GLOAD(75),GSTIF(2850),GRAVI(3),
IFFIX( 500) ,LOCEL(45)1 LNODS(20, 9), MATNO(20, 10)a
NAC VA (75 ) ,NAMEV( 10), NDEST (45), NDFRO( 20 )
N\OFIX (36), NOUTP (2), NP IVO( 10), POSGP (5), THICK( 100),
PRESC(36,5),PROPS(5,17),RLOAD(20,45),STFOR (500),
STRSG(5, 1800),TDISP(500),TLOAD(20, 45),TOFOR(500),
rREAC 3 6, 5), VECRV(75), WEIGP (5), DICOS(3, 300),
AMATX(9, 5), DMATT(5, 5,5)

OPEN(UNIT=15,FILE='f SHELL1 INP A',STATUS = 'OLD')
OPEN (UNIIT=6, FILE='/ SHELL. OUT A', STATUS ='NEW')
OPEN(UlNIT=1, STATUS= 'SC RATC H')
OPENl(UNIT=4, STATUS='SCRATCH')
OPE N(LINI T=7, STATUS='SCRATCH')
OPEN(UNIT=8, STATUS='SCRATCH')
OPEN(UNIIT=12, STATUS='SCRATCH')

PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING

CALL DIMENJ(MBUFA, MELEM, MEVAB1 MFRON, MMATS, MPOIN, MSTIF,
MTOTG, MTOTV, MVFIX, NDOFN, NPROP, NSTRE, M3POI,
MLAYR)

CALL THE FJUBRO-UTINE WHICH READS MOST OF THE PROBLEM DATA

CALL INPUT(AN'VEL, COORD, GRAVIS IFFIXLNODS,
MATNO, MFRON, MELEM, MMATS, MPOIN,
MTOTV, MVFIX, NDFRO, NDOFN, NELEMI NCOLA,
NEVAB, NGAUS, NGAUZ, NMATS, NNODE, MLAYR,
NtJFIX, NPOIN, NPROP, NTOTG, NLAYR, NREST,
NTOTV , NVFIX, POSOP, PRESC, PROPS, WEIGP,
NALGO NINGS, LARGE)

CALL SUBROUTINE WHICH COMPUTES THE ELASTICITY MATRIX -D- AND
THE MATRIX OF THE ANISOTROPIC PARAMETERS

CALL MODANJ(AIATX, DMATT, NMATS, NPROP, PROPS, MMATS,
MATNO, MELEM, MLAYRD NELEM, NLAYR)

CREATE THE THICKNESS AND A LOCAL ORTHOGONAL SET AT EACH NODAL POINT

CALL WORKS(CCOORD, DICOS, LNODS. THICK. MELEM, MPOIN,
NPO IN, M3POI)

WRITE(5. *J) '...........+C 0 M E S 0 U T 0 F W 0 R K ......
PAUSE

CALL SUBROUTINE WHICH COMPUTES I3MATX AND GMATX. THESE MATRICES
ARE STORED ON TAPE 8 FOR LATER USAGE

CALL BGMAT(COORD, DICOS, LNODS, MATNO, MELEM,
MLAYRI MMATS. MPO IN, M3PO1, NELEM,
NEVAB, NGAUS, NGAUZ, NLAYRI NNODE, NPROP,
POSGP, PROPS, THICK, WEIGP)I CALL SUBROUTINE WHICH COMPUTES THE APPLIED LOADS

AFTER READING SOME NODAL DATA
WRITE(5,*) 'ENTERS LOADS AFTER COMING OUT OF BOMAT'
PAUSE
CALL LOADS(ANVEL, COORD, RLOAD, GRAVI, LNODS,

MATNOD MELEMI MEVABI MMATSD MPO IN, DICOS,
NELEM. NEVAB, NGAUSD THICK.
NNODE, NPROP1 NSTRE, POSGP, M3POI,
PROPS, WEIGP, MLAYR, NLAYR)I WRITE(5,*)' !''C 0 M E S 0 U T0 F L 0 A D S,
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INITIALISE CERTAIN ARRAYS
WRITE(50,*)'VALUE OF NEVA3 ENTERING ZERD='oNEVAB

CALL ZERO(EFFST. ELOAD, EPSTN, MELEM, MEVAB. KINGS,
MTOTG, MTOTV, NDOFN, NELEM. NEVAB. NREST,
N4STRE, NTOTG, NTOTV, NYFIX. MVF IX. STRSG,
TDISP, TFACT, TLOAD, TREAC)

WRITE(50,*)'VALUE OF NEVAB COMING OUT OF ZERO=',NEYAB
LOOP OVER EACH ELEMENT

WRITE(50,-*)'NINCS ='.NINCS
DO 100 1IINCS =1, NINCS

READ DATA FOR CURRENT INCREMENT

* W4RITE(50,-*)'VALUE OF NEVAB ENTERING INCREM',NEVAB
CALL INCREI'(ELOAD.FIXED. IINCSMELEM.MEVABMITER,

MTOTV1 ,MVFIX, NDOFN, NELEM, NEVAB. NOUTP,
NOFIX, NTOTV. NYFIX. PRESC. RLOAD, TFACT,
TLOAD. TOL.ER, LNODS. IFFIX. NNODE3 NCOLA,
NREST, KINGS)

LOOP OVER EACH ITERATION
KSTOP = 0
K4UNLO = 0
DO 50 1lTTER =1, MI TER
KITER -I INC,,::-II11TER
J IN C SI I NC-, K INGS

* CALL SUBROUTINE WHICH SELECTS SOLUTION ALGORITHM VARIABLE KRESL

CALL ALGOR(FIXED, KLTER. lITER, KRESL,MTOTV,NALGO,
NTOTV, KUNLO, KINGS)

WRITE(5,*)'COMES OUT OF ALGOR'
WRI TE( 5,*) 'VALUES OF KRESL. NALGO', KRESL, NALGO

CHECK. WHETHER A NEW EVALUATION OF THE STIFFNESS MATRIX
IS REQUIRED

IF (KRESL. EQ. I)
CALL STIFF(EPSTN. ESTIF. KITER3 LNODS, MATNO,

MELEM, MEVAB. MMATSD MPO IN, MTOTG, NDOFN,
NELEM, NEVAB. NGAUS, NNODE, NPROP,
NSTRE, POSGPD PROPS, STRSG. WEIGP. AMATX,
DMATT. MLAYR, NLAYR, THICK,
TDISP. MTOTV, LARGE)

WRITE(j5, -*;' '4****COMES OUT OF STIFF******'

MERGE AND SOLVE THE RESULTING EQUATIONS BY THE FRONTAL SOLVER
WRITEC 5,*) '******CALLING FRONT******'

WRITE(50,*) 'KRESL, NALGO BEFORE CALLING STIFF'.KRESL,NALGO

WRITE(50,*)'VALUE OF NTOTV BEFORE CALLING FRONT',NTOTV
CALL FRONT(ABDIS, ELOAD. EGRHS, EGUAT, ESTIF. FIXED.

GLOAD. GSTIF, IFFIX, JINCS. lITER. KRESL#
LOCEL, LNODS, MBUFA, MELEM. MEVABI MFRON,
MST IF, MTOTV, MVF IX. NAC VA. NAMEV. NDEST,
NDOFN. NELEM, NEVAB. NNODE. NOFIX. NPIVO.
NPOIN, NTOTV, TDISP. TLOAD. TREAC. VECRY)

WRITE(5,*)'START ENTERING RESTR'
WRITE(5.*) '********COMES OUT OF FRONT*******'

CALCULATE RESIDUAL FORCES

CALL RESTR (ASD IS, EFFST, ELOAD, LNOD)S.MATNO, MELEM, MMATS, MPO IN. MTOTG. MTOTV,
NDOFN, NELEM. NEVAB, NGAUS. NNODE,

* NPROP, NSTRE, POSGP, PROPS, STRSG,
* ~TDISP. WEIGP. EPSTN. KUNLO, AMATX. DMATTo

THICK, MLAYR. NLAYR. LARGE)

CHECK FOR CONVERGENCE
WRITE( 5, *) '*******CALLING CONVER*******



Pago 37

CALL CONVEP(ELOAD, IITER, LNODS. MELEMI MEVAB, MTOTV,
N-CHEK. NDOFN, NELEM, NEVAB, NNODE. NTOTV,
STFOR1 TLDAD, TOPOR, TOLER)

WRITE(5,*) '*********COMES OUT OF CONVER*******'

OUTPUT RESULTS IF REOVUIRED

I F( I ITER. EQ. 1.AND. NOUTP (1). GT. 0)
CALL OUTPUfr(I ITER, MTOTG, MTOTV. MVFIXJ NCHECKI NELEM,

NGAUS, NOFIX. NOUTP. NPO IN,
NSTREI NVFIX, STRSGJ TDISP1 TREAC. EPSTNi
POSGP1 EFFST, IIATNO, MMArS, PROPS,
NPROP, MELEM, THICK.
l'POIN, LNODS, MLAYR. NLAYR)

IF SOLUTION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS

I F (I ITER. E. 1. AND. NC HEC K. EQ. 0) GO TO 100
IF(NCHEC. EQ. 0) GO TO 75

CONTINUE

KSTOP =1
CALL OUTPUT( IITER, MTOTG, MTOTV, MVFIX. NCHECKD NELEM,

NGAUS, NOFIX, NOUTP. NPOIN,
NS-TRE. NVFIX, STRSG, TDISP. TREAC, EPSTN,
POSGP, EFFST. MATNO, MMATSJ PROPS,
NPROP, MELEM, THICK,
MPO IN, LNODS, MLAYR, NLAYR)

IF (KS TOP. E. 1) STOP

RECORD ONTO TAPE 12 THE DATA NEEDED FOR RESTART THE PROBLEM
TO NEXT INCREMENT

CALL PES-TR (EFFST, ELOAD, EPSTNI MELEM, MEVAB, MTOTG,
MTOTV. rVFIX, TDISPI TLOAD, TREAC, STRSG,
TFACT, IINGS)

CO0NTI NUE
STOP
END
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ABSTACTMa. Yang and Chiou [1] assumed the yarns in
a unit cel of a 3-D braided composite acamposite
rods, which form a paralle Pipe. Strain energies due

The macromcopic elsti behavior of 3-D braided to Yarm axil tension, bending and lateral cm-
comosiesis charactarized on the basis of a wi- pression. are considered and formulated within the

creoahanical analysis of a unit cl structure. uzit cell. By C"ast W*se' theorem. dosed form
Treating a 3-D braided comoste as an assembly of expressions, for axial elastic moduli and Poissond's

iniidual unit cell idealixed as a pin-jointed truss ratios have been derived as functions of fiber volume
in tOw shape aft brick. the Finte Cell model is based fractions and fiberoretins
on the principle of virtual work aid structural truss-

anlyis 7h sfina of th eutntmdli Ma. et. also developed a 71ber Inclination
explred vi paamericstud an veifid uingtheMader according to the idealized zig-zagging yarn

tiexpoe r of ac StUAIan vomprifie s arrangement in the braided preform.t21 They
tensle r iies f czboa-crboccomosies.assumed an inclined 1-amina as a representation of

DIRODUCTION one set of diagonal yan in a unit cell. In this way.
tour inclined uIdirect-onal laminse form a unit cell.

of arosaceindstr inThen, by the employment of classical laminate
recen =WAsabmugrwtlo arsa d uset of theory. the elastic moduli can be expressed in terms

innovative design an" fabrication techniques for o h aia rpris
adacdStruIca nlmmaese reen prgrs FPam a *Vveforoa processing science' point of

ifabric lormatimm technlogy hb created nwview, Ne at; .1(3 developed a 'Fabric Geometric
aoema in composite structural design Using the
fabric Jaitioia techalsa. various fiber gemtric Mae Thn iiar nm~m.2e stiffess of a

stnrcterme can be formed. easily.a rert ul of stbiese al -1ts m inseA maimm train
expiate the potential of these new masterial systems. O tfnse;o nislmn&Amznmsri

an analytial framework is needed to link fiber energy criterion was used to determine the failure

architecture and material properties to composite pon o ~h aiaby taking bending stres on
proprew yar crrsov int con .Ieration The stiffness

matrix foams a link between applied strains and the

Among the large fsaily of textile stractural correspoding stress reos. Throughout this
#seie.tu - rai ostsiaaecve analysis. the strestraift chrceitics of the

a great dal of attention owing to their improved mpstardteind
stisess and strength in thes thcknes- direction. j 1 rs oelscpoeresfmthabv

ther 0difmlto =fre zcaailties aSevter three meodals can be used as input to a generalized
- et U banP d.bun deelped th SOV~eeri finite elemkent program in order to analyze more

a~iAth mdelshavebee devlope to co-1-e shaped structures. By doing so. the 3-D
thslastic m=0&2 and structural behavior of 3-D ~ jjcmoiehst qtetda fetv

braided composites. ce nou. "nd the unique -8rcedto of each
Indviua yrnand mai ar " re out. WiJth

these copex fiber architecture systems, the



'efective continuum concept can no longer provide total value of each member deformation caused by allaccurate description. Rt is the objective of this paper the nodal displacemnzts may be written in theto establish a finite cell model (FCld) which can following matrix form:
accommodate structures wvith variable unit cells and

provide a link between microetructural design and (q- (a](lj(1
mascro-structural analysis. In complex structural
shapes such as I-beams, turbine blades. the final
structure often consists of several types of fiber CA. aUau sin Iiarcitecture. az 218 a~m 12

The FCld is based on the concept of fabric unit if ! m2 an rcell structure and structural truss analysis. The

fiber architecture within the composite is considered
as an assemblage of a finite number of individuial where (a] is called, the displacement transformation
cell is the Smallest representative volume &om the nodal displacements. InL other words. it represents
fibrous assembly. The unit cell is then treated as athcopiblyofdsaemnsfasse.
space-truss structure with the endowed rep- The next step is to establish the force-dis-resentative architecture, rather than a mfateials. with placement relationship within the unit cell. For a

a se of ffetiveconinuu pipezlea.pin-connected trus the member force-deformation

The key step in the formulation of the problem relationship can be written as:
is the identification, of the unit cels nodal supports, -(J-E~)(2)
suiar to ths nodal points of a conrventional finit
element. In. this model, the yams5 are assumed to where:
travel along the diagonals in a unit cell and are
treate as pin-jointe two-force truss membpers. By
treating a unit cell specifically as a 3-1) space truss . a E O j3-DI truss finite element technique may be employedAW
for the mechanistic analysis.

A displacement method, is chosen in the finite
element procedure which follows the principle ef The principle of virtual work states that thevirtual work. Thzis method regards the inodal di. wor4 done an a system by the external forces equals

~~~aui iplacements asbscinnw s husd an Yte fiit the increase in, strain energy stored in the system-.
placmen ora uit dsplcemnt s usd i th fiiteHerm the nodal forces can be considered as the exter-element procedure. The compatibility condition is nal forces of the unit cell. !Iherefore, if (RI representsfirst satisfied b7 correlating the node e'isaements the nodal farc vecto, it follows thatto the end deformations of the membt

The foc-ipaeet relationship is then kmo- A'rQ (3)
established etenthe member end forces and do- where (rd and (ga) are virtual displacement andformations and between the possible nodal force and eonstrspcvlyFomE .()ad2,thnoda displcements. FInally, using nodal equllb- dfolloiguationsecive deromvE&s)ad() h
rim equations, the member forces and deformatiewfloignaain a b eie:
of the Structure are obtained. The matrix EMi or the (Q) 4(r 4stiffess of the cell is then derived to relate nodal (4
displacement vet to nodal forcs for a cell -(I'lJ

In order to include the effect of matrix, which and () ~I 5
is suldecte to tension or compressiion under the Or,(dcR - (dT(aRmlmr (6)
deformation of yas, the ma=i is assumed to act asOr
truss members, connecting the two end of a given (R MCIC7
setyarm in the unit cefl asshAwn in Pgure L Inwhrthe MUl 04U the nodes, or the ends ofyarns, are pinwerC) noda forces
Jointed with three degrees -oa freedom in translation.
HMO"e the matrix PlMa srole in restridbig the fre X 1 ~a stiffluess matrix of the
zuainmd desfrmatie 4(of u There are a total unit cell
of 24 d4Ipses of headsm in a Sour diagional yamn unit -n~n ipaeet
ceIL, For this analyss the interaction at the yarnd=nWdipaeet

Ineuannga"d bending efift of yarn are not Usingc quation?,. the noda firce A the nodal
diplcemens Of a unit ueflare relaed. Thuis, for a1et eq rpmeeut the value f m berdetogma. -tr= shapewhI&daonitof afinite ume of

4s1q causfed by a nit nodedimlacementr, z iu. Mwd MU 1 ClsWith At Sedf assemblage paftern, a aye-



tern of equations for the total structur~al shape can be To do so. the positions of each unit cell should be
assembled using the individual coil-relations ientified and recorded like traditional finite element
following the fiit element, methodology. A complete programming. Hence, a complex shaped structure.
listing of the terms assocated with the K matrix is such as 3-d braided I-beam. rotor. etc. can be

give infigure 2. analyzed if the basic parameters of unil. cells and

From the solution of the equations, the stress fbrvlm rcinaegvn
distribution and deformation of the entire structure VERIFICATION
unde applied load can be calculated and analyzed.
To istrate the application of the FCM, 3-D braided To provide aL preliminary verification of the
composites are used for this study. With basic pa. model simple rectangular coupons of the 3-D braided
rameters in a unit cell such as yam elasti modu- carbon-carbon composite were fabricated and
ins, fiber volume frmctin yam orietation and unit cactrzdby tensile testing. When using a
cell dimension fully aa cerired, th appvA y f simple shape, as detailed, in(4]. the key parameter in
the FCM to pre dic the structural response Of the braiding process is the track and column
Composites will be demonstrated through Itipaeet.Teedspaeet eemn h

pammtri stuy ad vrifid epenmntaly.projected orientation of fibers in the x-y plane, as well

NUJMERICAL S1101lATIONS as affecting the overall structural geometry of the

The FML was implemented by the use ofTetrkclmndsaeetshonfr
computer simulation. By entering the basic This studywere m 1adiplacThenttion fin-
parameters for a unit Cell and £ 6Wki Prprte cts atd erac ipee n IIIbbn and V2 o ato r column
to the pogram. thelodefzatn and elastic aearc displacement of u, bobbins n mi Th colmn
properties, such as elastic moduli and Poison~sdipaento bbisinnemin.Thsaq
ratios, of a composite can be calculated. A few A reetativ voum of these farics, or the unit
examples are employed to demonstrate the cell is identified by the d~sp~aement vaues of u&v. _
applicability of the PICKL unerffirent conditions. Using the FCM. the structural response of the

To study the elastic behavior between difuret unit cell. unde applied load was examined. The
fiber geometries, the composites - W~ an 1x2 simulated results were coamaed to the experimental

bcsiing 0 ank anmeers data. The material used for this study was T-40PCidn oceses ;r hsn. l ascI W carbon fiber, with a fiber modulus of 40 Msi. The
ire identical except the dimndosins of the two unit WMxixlO( 3-D braided preforma were consolidated
=eIls. FPgure 3 shows the predicted tensile stress. with carbon; the fiber volume fraction of the
Itrai cwrves where highe stiffness of 2l braiding composite was 35%. End tabs were adhered to the

can. be observed. The reason is that the lxi braiding ends of the specimens, and strain, gages were applied
hs compact fiber geometry in a unit cell. to the Specimen surface. The tensile tests were

carried out According to ASTM Standard.
Figure 4a SMd 4h. depicL the eAsti behavior of

lxi braided composites under 1-1, 2-2 and 3-3 From the experimental stress-strain curves
Airectional tensile loading conditions for Kaviar shown in Figure 7. it -can be seen that the tensile

- 49Epon, 828 and carbonfearbon composites, responses of the 3-D braided CarbonlCarbon
espectivey. As shown in the figure, the modulus in com fposites are nearly linear to the point of failure.
1-i direction is the highest as expected, while the The possible nonlinear behavior due to geometric
-iodulus in 3-3 direction is the lowest effect &nd microcracking, are not evident.

Thet effect of fiber volmes fraction under the
- -ns braiding process is ilustrated in pigure 5. For the lack of accurate measurement of fiber
Three volume fractions are chosn f study Hern, volume frlaction, of a unit cell. a theoretical value of
'he dimension of a unit cell, fiber-bar area and 35% Of fiber volume fraction was used for the
aatri-bsr area are diffareat due to difrn fier numericsl computation. The dimension of a unit cell
ilume fraction. The results demonstrate that the is determined from. the meIrm n by a digital

composite with higher fiber volume fraction has caliper. Since the dimensions of a unit cell are
Mgher modulus. considered to be the center lines of members of the

unit Coll, pert, of the bars lie outside the unit celL
In laminated compoitet is known that for Thus, an averaging method for the determination of

the same fiber volume fraction the compos with the ems6Cti*n area of the bans was used. For a
'pgher eUf-exls fiber edentats as lae el Oati unit Cel di~ni of HxW4', the area of a fierbar

uopertiss. Toostu* twois phnmn nmoes of can be aedned as Af. o2SHWT / 4CE2*W2+Tr2fi2.
.30, 200. 240. 300 and 460 of braiding anides ar the ameatO a matrix-ber can be ezpressed as Amanalyasi, w- siIn pigure 6. 4010e copoIte withW OI 4(H+W+T). Her, are of each fiber-bar asIebraiding angLe 2Its th M M~m mouls M wla the matrix-bar ame the same. Accordinglyr

Imteba.-@n angle Is aboie 200. te elastic the elas* prepertie used for the unit cell arcE h eetr o com osieeds to be Inaa ve~ to
braidng fier ehtego. ur 40 md; ;Vf-.am

m o68 MOM a be ertuadod to analyse the 3-D XuLu'12 ms;V6=oAs
t~*dCompoe wIth diffeet un e it cells.
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CONCLUDING REKMRK

A finite cell mdel haa been developed to pre-
dic th mehancalbehviwof -D bri Composites.

By appropriate cho ot yamn mechanicul Properties
and precise detemiation otdimension, ata unit cel
the 1CX has been shown to be an adequate model for
any 3-D braided composite for a first apoiain
Further studies en yamn properties should be
conuted in order ti poede a realistic heads for the
application of 1CM to composite mechanical
ProPerties.

In a 3-D baedcomposite, the yarns actually
excparienco be=ag mements throughout the unit
cel urg the braiding V ao m. lii -h model
wil be modified. to Include the bending, effect and the
pin-Jointed truss replaced as a stiffer frame
geuomy tauicelaogtebudy ttue It suld be pointed out that the fiber

Specimen is slgtydiffont fiam the ow user the
center. InoM e to -or preciuely chrceietheI loadd~.matoa raltiondip of the whole pote
espedly at the career of acomplex shap 3I braid
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Finite Element Analysis of 3-D Braided Composites
Charles Lei, Yun-Jia Cai and Frank Ko
Fibrous Materials Research Center
Department of Materials Engineering, Drexel University
Philadelphia, PA 19104

ABSTRACT

A numerical method, which utilizes the computer aided geometric modelling

(CAGM) in conjunction with finite element procedures, is presented to predict
the mechanical behavior of 3-D braid composites. The CAGM, based on the

computer geometric technique and textile formation process, provides the

detailed information of the fiber architecture of 3-D braid composites. With the

fiber architecture being defined, unit cell structures can be identified and be

treated as space structures. Then, finite element procedures can be performed

on each unit cell to obtain the elastic behavior of the composites. The present

analysis includes the consideration of the interior and boundary elements of

the entire cross-section, and consideration of bending moment of the yarns.

The present model predicts a lower value of Young's modulus than that of

experimental results. Modifications will be made on how to properly represent

the matrix effect of a 3-D braid composite.

INTRODUCTION

In the family of advanced composites, 3-D textile composites have received

great attention because of their superior structural properties such as no

delamination, improved stiffness, tough.less in the through-thickness

direction and improved impact tolerance.(1] In developing these composites

with innovated fiber architecture, an analytic model is needed in order to

describe the load-deformation-failure properties of a composite on a

macro cale. Such a model must be developed based on the accurate description

of geometry and material interactions in the composite fiber achitecture.

!
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As reviewed in the papers of Rosen et aLE2] and Ko(3], the literature for the
analysis of 3-D, or X-D fibrous reinforced composites are very limitedL Most of

the publications concern with the formulation and prediction of mechanical
properties of the composites. For instance, Rosen et al. [2] used the concept of
"constant stress state" to derive the average elastic constants and thermal
coefficients of a unit cell structure. Chou et al. predicted elastic moduli of 3-D
braided composites based on energy method (4] and on the modified classical
laminate theory [5], respectively. Combining textile engineering methodology
and averaging effective properties of a unit cell, Ko et al. [6] developed "fabric
geometric model" to predict the mechanical properties and failure of 3-D
composites. Following the similar considerations of volume averaging
method, Byun et al. (71 predicted elastic moduli of 2-step braid composites. The
elastic properties from the above models can be used as input to a generalized
finite element program in order to analyze complex 3-1D structures.

As far as the methodology is concerned, the conventional finite element
method assumes the fibrous composite to be an effective continuum which
possesses anisotropic deformation properities. Therefore, the finite element
method can be used to analyze structures of complex conformation. For
example, the well-known structural analysis programs based on the finite
element method, such as NASTRAN, ABAQUS and ANSYS, treat the composite
material structures computations in classical sense. That is, every element is
given apparent homogeneous properties in terms of the type, orientation and
stacking sequence of fibers and type of matrix. The stiffness matrix is
calculated for the model consisting of elements with equivalent properties.
Displacements, strains and internal forces of a structure are first obtained for
that model and then the stresses in the structure are calculated.

With complex fiber achitecture system such as 3-D braids, however, the
effective continuum concept can no longer provide an accurate description.
The reason is that the microstructure of such new system is much more
complicated than those found in laminated composites. Recently, Lei et al.
[8,91, following finite element procedure, developed a finite cell model (FCM) to

analyze the elastic behavior of 3-D braid composites. The PCM takes account of
the fiber achitecture of a unit cell in a 3-D braid composite and performs 3-D
structural analysis of the considered unit cell. Thus, the first step of the
analysis is to identify the unit cells in a composite. This paper presents a
methodology for the identification and classification of unit cells based on 3-D



braiding processing parameters. The identified unit cell structures form the

basis for 3-D graphic illustration of the fiber architecture and for the finite

element analysis of the 3-D preform as a struthure. With the FCM, the elastic

properties and the stress-strain relationship of 3-D braid reinforced composites

are predicted and compared with experimental results.

MOD iG OF S-D BRAID COMPORT

The 3-D braid composite can be regarded as an assemblage of a finite number

of individual structural cells. Each individual cell is the smallest

representative volume taken from the fiber achitectural system. It is then

treated as a space structure with the endowed representative achitecture, rather

than a material with a set of effective continuum properties. The basic idea is to

identify the unit cell's nodal supports, similar to the nodal points of a

conventional finite element. By the introduction of the principle of virtual

work in solid mechanics and structural analysis, the matrix [k], the stiffness

of the cell can be derived to relate nodal displacement vector to nodal forces for

a cell. In this section, the utilization of fiber architecture model and the finite

cell modelling will be discussed.

Unit Cell Charactew ion by CAGM
The analysis of textile composites depends directly on fiber architecture of the

composites. The fiber achitecture of a textile composite can be accurately

characterized by a computer aided geometric model (CAGM). The details of

development of this model is given in Pastore et al.'s paper [10]. This model

considers the relative motions of the tracks and columns in the braiding

machine and generates a mathematical simulation of the machine process.

Thus, the detailed internal geometry of a textile reinforced composite can be

visualized and the unit cell of the composite can be identified. Figure 1 shows

the fiber achitecture ofa 3-D braid with an inclined cut-out generated by CAGM.

The next step is to find out what the unit cell structure is in the braid.

In the paper (9], a unit cell structure shown in Figure 2 was proposed and

assumed to represent the entire structure of a braid. The unit cell structure was

used to simulate the behavior of 3-D braid carbon/carbon composites. The

recent development of CAGM suggests a finer and more accurate description of

unit cell structurs. By simulating the yarn movements across tracks and
columns of a loom and taking account of braiding direction, unit cell

conformation can be traced through 3-D geometric index of data. From the



data, space nodes of a braid can be defined by the interweaving, or interlock, of
yarns. Once the space nodes are known, the braid is divided into small cells by
connecting the space nodes with straigh lines. In each cell, the fiber
architecture can be identified and treated as a combination of several basic
patterns. Figure 3 shows all possible patterns in a 3-D braid generated by lx1
column/track movement. In practical case, a 3-D braid usually contains
several patterns.

For instance, Figure 4 shows top view of a cross-sectional cell patterns of
a 3-D braid fabricated by a loom of 4 tracks and 20 columns. Figure 4.a shows
the cell patterns after a column/track movement, and Figure 4.c shows the cell
patterns after next column/track movement. Figure 4.b and Figure 3.d shows
the corresponding patten numbers of each cell, respectively. From Figure 4,
one can recognize the cell structures in the outer region differ from the ones in
the inner region of the braid. Therefore, the CAGM can provide the
information of the various element types, i.e., central and boundary elements,
for finite element modelling. Figure 5 shows the space fiber structure formed
by a loom of 10 tracks and 4 columns under 4 column/track movements.

Finite Cell Modelling
The FCM is based on the concept of fabric unit cell structure and structural
analysis. The composite is considered as an assemblage of a finite number of
individual structural cells with brick shape. Each unit cell is then treated as a
space structure with the endowed representative architecture.

The key step in the formulation of the problem is the identification of the
unit cell's nodal points. As mentioned in the previous section, the CAGM
provides not only the detailed fiber architecture of each unit cell but also the
coordinates of each node. In this model, the yarns which pass by a node are
considered as intersected each other and hence, can be treated as either pin-
jointed two-force truss members or rigid connected frame members. With this
consideration, the interaction at the yarn interlacing is not treated in this

modelling. Thus, by treating a unit cell specifically as a pin-jointed space
truss , a 3-D truss finite element technique may be employed for the
mechanistic analysis.

In order to include the effect of matrix, which is subjected to tension or

compression under the deformation of yarns, the matrix is assumed to act as

1I



rod members, connecting the two ends of a given set of yarns in the unit cell.

Hence, the matrix plays a role in restricting the free rotation and deformation

of yarns.

Let ai represent the value of member deformation qi caused by a unit

nodal displacement rj. The total value of each member deformation caused by

all the nodal displacemtents may be written in the following matrix form:

(q) = [a] (r) (1)

where [a] is called the displacement transformation matrix which relates the

member deformations to the nodal displacements. In other words, it represents

the compatibility of displacements of a system.

The next step is to establish the force-displacement relationship within

the unit cell. The member force-deformation relationship can be written as:

[Q] [K (q) (2)

The principle of virtual work states that the work done on a system by the

external forces equals the increase in strain energy stored in the system. Here,

the nodal forces can be considered as the external forces of the unit cell.

Therefore, if (R) represents the nodal force vector, it follows that

r T  = ()T(Q) (3)

where (zi and (Q) are virtual displacement and deformation, respectively.

Prom Equations.(1) and (2), the followirg equations can be derived:

(R) = [K(r) (4)

where: (RI = nodal forces

1[(K[ = (a]TRK]a] = stiffness matrix of the unit cell
(r) = nodal displacements

Using Equation (4), the nodal force and the nodal displacements of a

us unit cell arn related by the stiffness matrix of the unit cell.

I



In present study, each unit cell is modelled to be a frame structure.

Therefore, axial, flexural, and torsional deformations of the yarns are

considered in the analysis. The unkown displacements at the joints consist of

six components, namely, the x, y and z components of the joint translations and

the x, y and z components of the juint rotations. Therefore, for a 9-node frame

unit cell, there are 54 degrees of freedom in this unit cell. Suppose that a

member i in a space frame will have joint number j and k at its ends. The

twelve possible displacements of the joints associated with this member are also

indicated in Figure 6. To obtain the stiffness matrix of a unit cell in a simple

way, the stiffness matrix of a member is constructed first instead of

construction of displacement compatibility matrix.

The member stiffness matrix is obtained by a unit displacement method.

The unit displacements are considered to be induced one at a time while all

other end displacements are retained at zero. Thus, the stiffness matrix for a

member, denoted [SM], is of order 12x12, and each column in the matrix

represents the forces caused by one of the unit displacements. The layout of the
12x12 matrix is shown in Figure 7. In general case, if the member axes are not

coincident with structural axes, the member stiffness should be transformed by

a rotation transformation matrix. The rotation matrix [RT] for a space frame

takes the following form:

[eer] 0 o M  0 0 (5)

where the matrix T] for a circular member is as follows:

C1  CT C- L
m - -C1CY/Cfl CyZ .CYCZ (6)I -CCxz 0 CjCx JI

where Cx= (xk - xj) / L; Cy = (yk yj) / L; CZ =(zk - zj) L; =(xk - xj)2 + (k -

)2  zj)2]l.2; Cxz (Cx 2 + Cz)L

Thus, for a member, the stiffness matrix [SaMj in structure axes may be

expressed in the following form:



=SD ERT'] 'SMJ(RT] (7)

Then, assembly of the contributions from each member to a joint, or a node,

yields the stiflfess matrix of a unit cell.

With the stiffness matrix of a unit cell being known, for a structural

shape which consists of a finite number of unit cells, a system of equations for

the total structural shape can be assembled using the individual cell relations

following the-finite element methodology. From the solution of the equations,

the stress distribution and deformation of the entire structure under applied

load can be calculated and analyzed.

NUMERICAL SIMULATIONS

The FCM was implemented by the use of computer simulation. With basic pa-

rameters in a unit cell, such as yarn elastic modulus, fiber volume fraction,

yarn orientation and unit cell dimension fully characterized, the applicability

of the FCM to predict the structural response of composites will be demonstrated

experimentally.

Simple rectangular coupons of the 3-D braided carbon-carbon composite
were fabricated and characterized by tensile testing. In the present case, the

track/column displacement ratio is 1/1. The material used for this study is T-

40 carbon fiber, with a fiber modulus of 276 GPa. The fiber volume fraction of

the composite is 35%. The modulus of the carbon matrix is taken as 8.3 GPa for

prediction. Since the dimensions of a unit cell are considered to be the center

lines of members of the unit cell, part of the bars lie outside the unit cell in real

case. An averaging method for the determination of the cross-section areas of

the bars was used. Assuming that all the fiber-bars of the composite have the

same cross-sectional area, and that all the matrix-bars of the composite have

the same cross-sectional area as well. Thus, for a specimen with dimension of

HxWxT, the area of a fiber-bar can be obtained as

Af = 0.35HWT / (totalfiber-barlength)

the area of a matrix-bar can be expressed as



Am = 0.65HWT / (toLl matrix-bar length)

Accordingly, the unit cell dimension is 0.635x 0.22x 0.19 cm3. Af is 0.0032 cm 2

and Am is 0.004 cm2.

Figure 8 shows the loading condition and boundary conditions of a
specimen. A specimen in length of 10 column/track movements is considered
for analysis purpose. The applied load was divided into several steps on
account of the possible nonlinear load-deformation behavior due to geometrical
conformation. Figure 9 shows both experimental and numerical stress-strain
curves of c/c composites under simple tension. From the figure, the stiffness of
the composites predicted from FCM showed a lower value than experimental
results; while FGM predicted a higher value. For the TCM, the consideration of
yarns and matrix as structural bars may result in a lower stiffness in matrix-
bar axis. Although the matrix-bars play the role in restricting the free
deformation of the yarns in FCM, they show larger deformation under tensile
load. Consequently, the nature of the finite cell modelling tends to predict a
lower value of stiffness of a structure. Further studies on this model to
investigate the interaction between fiber and matrix have to be conducted. The
load transfer mechanism between fibers and matrix as well as the effect of
fiber achitecture in a unit cell needs to be explored. This may lead to a 3-D
solid element modelling on the unit cell of a braid composite. For the FGM, the
higher predicted stiffness may be attributed to the use of fiber data as an input
for our prediction. In order to reflect the fiber breakage and degradation
during manufacturing, the use of processed yarn data may be more
appropriate.

CONCLUDING

A unified mechanistic method, incorperating the computer aided geometric
modelling and finite element procedure, has been presented to predict the
mechanical behavior of 3-D braid composites. The CAGM has been shown to
provide the detailed information of the fiber architecture of 3-D braidj composites. The present analysis includes the consideration of the interior and
boundary elements of the entire cross-section, and consideration of bending

moment of the yarnL By appropriate choice of yarn mechanical properties and

I



precise determination of dimension of a unit cell, the finite cell modelling has

been shown to be an adequate model for 3-D braided composites as a first

approximation. The precision of the model may be further modified by an

alternate method of representing the matrix effect.

In order to expand the usefulness of the FCM to more complex modes of

deformation such as bending and shear, the interaction between reinforcing

yarns and the matrix must be examined. The prediction of the stress-strain

curve up to failure requires the establishment of a suitable failure criterion.
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Figure 1. Fiber Architecture of a 3-D braid and a cut-out
view generated by CAGM.

Figure 2. Unit Cell Structure presented in [9]

I



- i

~A(4^7) NAM

Figure 3. Element Patterns of a 3-D (Ix1) braid
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Figure 4. A cross sectional cell patterns generated by two
column/track movements.
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Figure 5. Unit cell Structures formed by a loom of 10 tracks
and 4 columns under 4 column/track movements.
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Figure 7. Stiffness matrix of a member in a unit cell.
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Figure 9. Comparison between experimental and numerical
results of 3-D braided carbon/carbon composites.
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